default search action
Handbook of Computability Theory, 1999
- Edward R. Griffor:
Handbook of Computability Theory. Studies in Logic and the Foundations of Mathematics 140, North-Holland 1999, ISBN 978-0-444-89882-1 - Edward R. Griffor:
Preface. v-vii - Robert I. Soare:
The History and Concept of Computability. 3-36 - Douglas Cenzer:
∏10 Classes in Computability Theory. 37-85 - Piergiorgio Odifreddi:
Reducibilities. 89-119 - S. Barry Cooper:
Local Degree Theory. 121-153 - Theodore A. Slaman:
The Global Structure of the Turing Degrees. 155-168 - Richard A. Shore:
The Recursively Enumerable Degrees. 169-197 - Robert I. Soare:
An Overview of the Computably Enumerable Sets. 199-248 - Dag Normann:
The Continuous Functionals. 251-275 - C. T. Chong, Sy D. Friedman:
Ordinal Recursion Theory. 277-299 - Gerald E. Sacks:
E-recursion. 301-314 - Peter G. Hinman:
Recursion on Abstract Structures. 315-359 - Viggo Stoltenberg-Hansen, John V. Tucker:
Computable Rings and Fields. 363-447 - Marian Boykan Pour-El:
The Structure of Computability in Analysis and Physical Theory. 449-471 - Yuri Leonidovich Ershov:
Theory of Numberings. 473-503 - Terrence Millar:
Pure Recursive Model Theory. 507-532 - Helmut Schwichtenberg:
Classifying Recursive Functions. 533-586 - Peter Clote:
Computation Models and Function Algebras. 589-681 - Klaus Ambos-Spies:
Polynomial Time Reducibilities and Degrees. 683-705
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.