


default search action
3rd AIMLSystems 2024: Baton Rouge, LA, USA
- Proceedings of the 4th International Conference on AI-ML Systems, AIMLSystems 2024, Baton Rouge, Louisiana, USA, October 8-11, 2024. ACM 2024, ISBN 979-8-4007-1161-9

Research Track
- Andrea Cossu

, Andrea Ceni
, Davide Bacciu
, Claudio Gallicchio
:
Sparse Reservoir Topologies for Physical Implementations of Random Oscillators Networks. 1:1-1:9 - Massimo Pavan

, Gioele Mombelli
, Francesco Sinacori
, Manuel Roveri
:
TinySV: Speaker Verification in TinyML with On-device Learning. 2:1-2:10 - Shubham Gandhi

, Manasi Patwardhan
, Lovekesh Vig
, Gautam Shroff
:
BudgetMLAgent: A Cost-Effective LLM Multi-Agent system for Automating Machine Learning Tasks. 3:1-3:9 - Pedro Pongelupe Lopes

, Gerlando Gramaglia
, Davide Bacciu
, Humberto T. Marques-Neto
:
Towards Forecasting Bus Arrival Thorough A Model Based On GNN+LSTM Using GTFS and Real-time Data. 4:1-4:9 - Renju C. Nair

, Ashish Gatreddi
, Madhav Rao
, Muralidhara V. N
:
Visual Perception Transformer: Robust image understanding on unseen transformations across wide-ranging dataset sizes. 5:1-5:9 - Francesco Puoti

, Fabrizio Pittorino
, Manuel Roveri
:
Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting. 6:1-6:8 - Raveendra R. Hegde

, Saurabh Sharma
:
Self Supervised LLM Customizer(SSLC): Customizing LLMs on Unlabeled Data to Enhance Contextual Question Answering. 7:1-7:11 - Richa Verma

, Srikar Babu Gadipudi
, Srinarayana Nagarathinam
, Harshad Khadilkar
:
ORCHID: Offline RL for Control of HVAC in Buildings using Historical and Low-Fidelity Simulation Data. 8:1-8:9 - Luca Colombo

:
Federated On-Device Learning of Integer-Based Convolutional Neural Networks. 9:1-9:9 - Bidyut Saha

, Riya Samanta
, Soumya Kanti Ghosh
, Ram Babu Roy
:
TinyML-Powered Gesture Wizardry: Low-Cost, Low-Power Two-Stage CNN for Static Hand Gesture Classification on MCU in Appliance Control. 10:1-10:9 - Mohd Manzar Abbas

, Amit Ranjan
, Aixin Hou
, Supratik Mukhopadhyay
:
Trans-ARG: Predicting Antibiotic Resistance Genes with a Transformer-Based Model and Pretrained Protein Language Model. 11:1-11:8 - Amit Ranjan

, Adam Bess
, Md Saiful Islam Sajol
, Magesh Rajasekaran
, Chris Alvin
, Supratik Mukhopadhyay
:
KG-DTA: A knowledge graph-based meta-path learning framework to predict drug-target binding affinity. 12:1-12:9 - Md Meftahul Ferdaus

, Mahdi Abdelguerfi
, Elias Ioup
, David Dobson
, Kendall N. Niles
, Ken Pathak
, Steven Sloan
:
KANICE: Kolmogorov-Arnold Networks with Interactive Convolutional Elements. 13:1-13:10 - Jiarui Li

, Samuel J. Landry
, Ramgopal R. Mettu
:
GPU Acceleration for Markov Chain Monte Carlo Sampling. 14:1-14:8 - Rajat Singh

, Raajita Bhamidipaty
, Anjali Sharma
, Srikanta Bedathur
:
Tab2Graph: Transforming Heterogeneous Tables as Graphs. 15:1-15:9 - Abhijit Manatkar

, Devarsh Patel
, Hima Patel
, Naresh Manwani
:
ILAEDA: An Imitation Learning Based Approach for Automatic Exploratory Data Analysis. 16:1-16:11 - Nikita Karthikeyan

, Hayagreev Jeyandran
, Rohit Verma
, Rajeev Shorey
:
Selective Graph Convolutional Network for Efficient Routing. 17:1-17:9 - Alessandro Falcetta

, Giulio Cristofaro
, Lorenzo Epifani
, Manuel Roveri
:
VETT: VectorDB-Enabled Transfer-Learning for Time-Series Forecasting. 18:1-18:9
Industry Track
- Henry Liang

, Yu Zhou
, Vijay K. Gurbani
:
Efficient and verifiable responses using Retrieval Augmented Generation (RAG). 19:1-19:6 - Aayush Chaudhary

:
Assessing the Impact of Upselling in online fantasy gaming. 20:1-20:5 - Shubham Jain

, Amit Gupta
, Kumari Neha
:
AI Enhanced Ticket Management System for optimized Support. 21:1-21:7 - Fengchen Liu

, Jordan Jung
, Wei Feinstein
, Jeff D'Ambrogia
, Gary Jung
:
Aggregated Knowledge Model: Enhancing Domain-Specific QA with Fine-Tuned and Retrieval-Augmented Generation Models. 22:1-22:7 - Giridhar Mandyam

:
Remote Attestation and Secure AI in Systems-on-Chip/Systems-in-Package. 23:1-23:6 - Quazi Mishkatul Alam

, Vinay Kolar
, Marina Thottan
:
Towards AI/ML-Driven Network Traffic Engineering. 24:1-24:8
Demo Track
- Bibek Paul

, Archisman Bhowmick
, Mayank Mishra
, Sarthak Gupta
, Rekha Singhal
:
TASCA++ : A multi-agentic tool to scalably accelerate ML pipelines. 25:1-25:3 - Riya Samanta

, Bidyut Saha
, Soumya Kanti Ghosh
:
LeafSense: A Portable, Low-Cost, Low-Power Plant Disease Diagnostic Device Using TinyML. 26:1-26:3
Workshop Track
- Isha Shamim

, Rekha Singhal
:
Methodology for Quality Assurance Testing of LLM-based Multi-Agent Systems. 27:1-27:5 - Yunsung Chung

, Janet Wang
, Jihun Hamm
:
Bridging the Gap: Synthetic Data Augmentation through Inversion and Distribution Matching for Few-shot Learning. 28:1-28:5 - Harshit Verma

, M. Bhargav
, Ritvik
, Chetana Gavankar
, Prajna Devi Upadhyay
:
Question-Answering System in Computer Science. 29:1-29:4 - Emmett Chen

, Pallavi Bajpai
, Smriti H. Bhandari
:
Star and Constellation Recognition using YOLO framework. 30:1-30:6
Tutorials
- Manish Gupta

:
Deep Learning Methods for Query Auto Completion. 31:1-31:2

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














