


default search action
28. ALT 2017: Kyoto, Japan
- Steve Hanneke, Lev Reyzin:

International Conference on Algorithmic Learning Theory, ALT 2017, 15-17 October 2017, Kyoto University, Kyoto, Japan. Proceedings of Machine Learning Research 76, PMLR 2017 - Algorithmic Learning Theory (ALT) 2017: Preface. 1-2

- Philip M. Long:

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning. 3-10 - Henry W. J. Reeve, Gavin Brown:

Minimax rates for cost-sensitive learning on manifolds with approximate nearest neighbours. 11-56 - Daniil Ryabko:

Universality of Bayesian mixture predictors. 57-71 - Fahimeh Bayeh, Ziyuan Gao, Sandra Zilles:

Erasing Pattern Languages Distinguishable by a Finite Number of Strings. 72-108 - Nader H. Bshouty, Nuha Diab, Shada R. Kawar, Robert J. Shahla:

Non-Adaptive Randomized Algorithm for Group Testing. 109-128 - Rupert Hölzl, Sanjay Jain, Philipp Schlicht, Karen Seidel, Frank Stephan:

Automatic Learning from Repetitive Texts. 129-150 - Odalric-Ambrym Maillard:

Boundary Crossing for General Exponential Families. 151-184 - Ziyuan Gao, David G. Kirkpatrick, Christoph Ries, Hans Ulrich Simon, Sandra Zilles:

Preference-based Teaching of Unions of Geometric Objects. 185-207 - Vadim V. Lozin, Igor Razgon, Viktor Zamaraev, Elena Zamaraeva, Nikolai Yu. Zolotykh:

Specifying a positive threshold function via extremal points. 208-222 - Pierre Ménard, Aurélien Garivier:

A minimax and asymptotically optimal algorithm for stochastic bandits. 223-237 - Mano Vikash Janardhanan:

Graph Verification with a Betweenness Oracle. 238-249 - Maria-Florina Balcan, Avrim Blum, Vaishnavh Nagarajan:

Lifelong Learning in Costly Feature Spaces. 250-287 - Jungseul Ok, Se-Young Yun, Alexandre Proutière, Rami Mochaourab:

Collaborative Clustering: Sample Complexity and Efficient Algorithms. 288-329 - Arushi Gupta, Daniel Hsu:

Parameter identification in Markov chain choice models. 330-340 - Danielle Ensign, Scott Neville, Arnab Paul, Suresh Venkatasubramanian:

The Complexity of Explaining Neural Networks Through (group) Invariants. 341-359 - Hayato Mizumoto, Shota Todoroki, Diptarama, Ryo Yoshinaka, Ayumi Shinohara:

An efficient query learning algorithm for zero-suppressed binary decision diagrams. 360-371 - Laurent Orseau, Tor Lattimore, Shane Legg:

Soft-Bayes: Prod for Mixtures of Experts with Log-Loss. 372-399 - Daniil Ryabko:

Hypotheses testing on infinite random graphs. 400-411 - Wojciech Kotlowski:

Scale-Invariant Unconstrained Online Learning. 412-433 - Martin Grohe, Christof Löding, Martin Ritzert:

Learning MSO-definable hypotheses on strings. 434-451 - Dana Angluin, Tyler Dohrn:

The Power of Random Counterexamples. 452-465 - Niklas Thiemann, Christian Igel, Olivier Wintenberger, Yevgeny Seldin:

A Strongly Quasiconvex PAC-Bayesian Bound. 466-492 - Timo Kötzing, Martin Schirneck, Karen Seidel:

Normal Forms in Semantic Language Identification. 493-516 - Jaouad Mourtada

, Odalric-Ambrym Maillard:
Efficient tracking of a growing number of experts. 517-539 - Vitaly Feldman, Pravesh Kothari, Jan Vondrák:

Tight Bounds on ℓ1 Approximation and Learning of Self-Bounding Functions. 540-559 - Di Chen, Jeff M. Phillips:

Relative Error Embeddings of the Gaussian Kernel Distance. 560-576 - Alan Fern, Robby Goetschalckx, Mandana Hamidi-Haines, Prasad Tadepalli

:
Adaptive Submodularity with Varying Query Sets: An Application to Active Multi-label Learning. 577-592 - Ruitong Huang, Mohammad M. Ajallooeian, Csaba Szepesvári, Martin Müller:

Structured Best Arm Identification with Fixed Confidence. 593-616 - Ata Kabán:

On Compressive Ensemble Induced Regularisation: How Close is the Finite Ensemble Precision Matrix to the Infinite Ensemble? 617-628 - Vitaly Feldman:

Dealing with Range Anxiety in Mean Estimation via Statistical Queries. 629-640 - Yuyi Wang, Zheng-Chu Guo, Jan Ramon:

Learning from Networked Examples. 641-666 - Ning Ding, Yanli Ren, Dawu Gu:

PAC Learning Depth-3 $\textrm{AC}^0$ Circuits of Bounded Top Fanin. 667-680 - Pooria Joulani, András György, Csaba Szepesvári:

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds. 681-720

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














