


default search action
32nd ALT 2021: Virtual Event
- Vitaly Feldman, Katrina Ligett, Sivan Sabato:

Algorithmic Learning Theory, 16-19 March 2021, Virtual Conference, Worldwide. Proceedings of Machine Learning Research 132, PMLR 2021 - Algorithmic Learning Theory 2021: Preface. 1-2

- Jacob D. Abernethy, Kevin A. Lai, Andre Wibisono:

Last-Iterate Convergence Rates for Min-Max Optimization: Convergence of Hamiltonian Gradient Descent and Consensus Optimization. 3-47 - Jayadev Acharya, Ziteng Sun, Huanyu Zhang:

Differentially Private Assouad, Fano, and Le Cam. 48-78 - Jayadev Acharya, Peter Kairouz, Yuhan Liu

, Ziteng Sun:
Estimating Sparse Discrete Distributions Under Privacy and Communication Constraints. 79-98 - Juliette Achddou, Olivier Cappé, Aurélien Garivier:

Efficient Algorithms for Stochastic Repeated Second-price Auctions. 99-150 - Raghavendra Addanki, Andrew McGregor, Cameron Musco:

Intervention Efficient Algorithms for Approximate Learning of Causal Graphs. 151-184 - Ishaq Aden-Ali, Hassan Ashtiani, Gautam Kamath:

On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians. 185-216 - Arpit Agarwal, Shivani Agarwal, Prathamesh Patil:

Stochastic Dueling Bandits with Adversarial Corruption. 217-248 - Naman Agarwal, Pranjal Awasthi, Satyen Kale:

A Deep Conditioning Treatment of Neural Networks. 249-305 - Mridul Agarwal, Vaneet Aggarwal, Christopher J. Quinn, Abhishek K. Umrawal:

Stochastic Top-K Subset Bandits with Linear Space and Non-Linear Feedback. 306-339 - Alankrita Bhatt, Young-Han Kim:

Sequential prediction under log-loss with side information. 340-344 - Robi Bhattacharjee, Michal Moshkovitz:

No-substitution k-means Clustering with Adversarial Order. 345-366 - Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, N. V. Vinodchandran:

Testing Product Distributions: A Closer Look. 367-396 - Nataly Brukhim, Elad Hazan:

Online Boosting with Bandit Feedback. 397-420 - Mark Cesar, Ryan Rogers:

Bounding, Concentrating, and Truncating: Unifying Privacy Loss Composition for Data Analytics. 421-457 - Siu On Chan, Qinghua Ding, Sing Hei Li:

Learning and Testing Irreducible Markov Chains via the k-Cover Time. 458-480 - Aidao Chen, Anindya De, Aravindan Vijayaraghavan:

Learning a mixture of two subspaces over finite fields. 481-504 - Thibaut Cuvelier, Richard Combes, Eric Gourdin:

Asymptotically Optimal Strategies For Combinatorial Semi-Bandits in Polynomial Time. 505-528 - Riccardo Della Vecchia, Tommaso Cesari:

An Efficient Algorithm for Cooperative Semi-Bandits. 529-552 - Le Cong Dinh, Tri-Dung Nguyen, Alain B. Zemkoho, Long Tran-Thanh:

Last Round Convergence and No-Dynamic Regret in Asymmetric Repeated Games. 553-577 - Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, Michal Valko:

Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited. 578-598 - Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, David Kempe:

Adversarial Online Learning with Changing Action Sets: Efficient Algorithms with Approximate Regret Bounds. 599-618 - Louis Faury, Yoan Russac, Marc Abeille, Clément Calauzènes:

A Technical Note on Non-Stationary Parametric Bandits: Existing Mistakes and Preliminary Solutions. 619-626 - Aarshvi Gajjar, Cameron Musco:

Subspace Embeddings under Nonlinear Transformations. 656-672 - Rong Ge, Holden Lee, Jianfeng Lu, Andrej Risteski:

Efficient sampling from the Bingham distribution. 673-685 - Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi:

Near-tight closure b ounds for the Littlestone and threshold dimensions. 686-696 - Steve Hanneke, Aryeh Kontorovich:

Stable Sample Compression Schemes: New Applications and an Optimal SVM Margin Bound. 697-721 - Rishabh K. Iyer, Ninad Khargoankar, Jeff A. Bilmes, Himanshu Asanani:

Submodular combinatorial information measures with applications in machine learning. 722-754 - Philippe Jacquet, Gil I. Shamir, Wojciech Szpankowski:

Precise Minimax Regret for Logistic Regression with Categorical Feature Values. 755-771 - Ziwei Ji, Matus Telgarsky:

Characterizing the implicit bias via a primal-dual analysis. 772-804 - Marc Jourdan, Mojmír Mutný, Johannes Kirschner, Andreas Krause:

Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback. 805-849 - Adam Tauman Kalai, Varun Kanade:

Efficient Learning with Arbitrary Covariate Shift. 850-864 - Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent, Michal Valko:

Adaptive Reward-Free Exploration. 865-891 - Michal Moshkovitz:

Unexpected Effects of Online no-Substitution k-means Clustering. 892-930 - Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi:

Descent-to-Delete: Gradient-Based Methods for Machine Unlearning. 931-962 - Willie Neiswanger, Aaditya Ramdas:

Uncertainty quantification using martingales for misspecified Gaussian processes. 963-982 - Michela Meister, Sloan Nietert:

Learning with Comparison Feedback: Online Estimation of Sample Statistics. 983-1001 - Stephen Pasteris, Ting He, Fabio Vitale, Shiqiang Wang, Mark Herbster:

Online Learning of Facility Locations. 1002-1050 - Nicolas Schreuder, Victor-Emmanuel Brunel, Arnak S. Dalalyan:

Statistical guarantees for generative models without domination. 1051-1071 - Jie Shen, Chicheng Zhang:

Attribute-Efficient Learning of Halfspaces with Malicious Noise: Near-Optimal Label Complexity and Noise Tolerance. 1072-1113 - Joseph Suk, Samory Kpotufe:

Self-Tuning Bandits over Unknown Covariate-Shifts. 1114-1156 - Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric:

Sample Complexity Bounds for Stochastic Shortest Path with a Generative Model. 1157-1178 - Christopher Tosh, Akshay Krishnamurthy, Daniel Hsu:

Contrastive learning, multi-view redundancy, and linear models. 1179-1206 - Di Wang, Huangyu Zhang, Marco Gaboardi

, Jinhui Xu:
Estimating Smooth GLM in Non-interactive Local Differential Privacy Model with Public Unlabeled Data. 1207-1213 - Manfred K. Warmuth, Wojciech Kotlowski, Ehsan Amid:

A case where a spindly two-layer linear network decisively outperforms any neural network with a fully connected input layer. 1214-1236 - Gellért Weisz, Philip Amortila, Csaba Szepesvári:

Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions. 1237-1264 - Changlong Wu, Narayana Santhanam:

Non-uniform Consistency of Online Learning with Random Sampling. 1265-1285

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














