![](https://dblp.dagstuhl.de/img/logo.320x120.png)
![search dblp search dblp](https://dblp.dagstuhl.de/img/search.dark.16x16.png)
![search dblp](https://dblp.dagstuhl.de/img/search.dark.16x16.png)
default search action
13th BCB 2022: Northbrook, IL, USA
- BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Northbrook, Illinois, USA, August 7 - 10, 2022. ACM 2022, ISBN 978-1-4503-9386-7
Sequence analysis
- Amine M. Remita
, Abdoulaye Baniré Diallo:
EvoVGM: a deep variational generative model for evolutionary parameter estimation. 1:1-1:10 - Utkrisht Rajkumar, Sara Javadzadeh, Mihir Bafna, Dongxia Wu, Rose Yu, Jingbo Shang, Vineet Bafna:
DeepViFi: detecting oncoviral infections in cancer genomes using transformers. 2:1-2:8 - Ziqi Ke
, Haris Vikalo
:
Deep learning for assembly of haplotypes and viral quasispecies from short and long sequencing reads. 3:1-3:10 - Huey-Eng Chua, Lisa Tucker-Kellogg, Sourav S. Bhowmick:
ArcheGEO: towards improving relevance of gene expression omnibus search results. 4:1-4:10 - Weizhi An, Yuzhi Guo, Yatao Bian
, Hehuan Ma, Jinyu Yang, Chunyuan Li, Junzhou Huang
:
MoDNA: motif-oriented pre-training for DNA language model. 5:1-5:5
Electronic health records
- Zheng Liu
, Xiaohan Li, Philip S. Yu:
Mitigating health disparities in EHR via deconfounder. 6:1-6:6 - Yuqing Wang, Yun Zhao, Linda R. Petzold:
Predicting the need for blood transfusion in intensive care units with reinforcement learning. 7:1-7:10 - Sayantan Kumar
, Sean C. Yu, Thomas George Kannampallil, Zachary B. Abrams, Andrew P. Michelson, Philip R. O. Payne:
Self-explaining neural network with concept-based explanations for ICU mortality prediction. 8:1-8:9 - Tingyi Wanyan, Mingquan Lin, Eyal Klang, Kartikeya M. Menon, Faris F. Gulamali, Ariful Azad, Yiye Zhang, Ying Ding, Zhangyang Wang, Fei Wang, Benjamin S. Glicksberg, Yifan Peng:
Supervised pretraining through contrastive categorical positive samplings to improve COVID-19 mortality prediction. 9:1-9:9 - Ping Wang, Tian Shi, Khushbu Agarwal, Sutanay Choudhury, Chandan K. Reddy:
Attention-based aspect reasoning for knowledge base question answering on clinical notes. 10:1-10:6
Systems biology
- Mert Erden, Megan Gelement, Sarrah Hakimjee, Kyla Levin
, Mary-Joy Sidhom, Kapil Devkota, Lenore J. Cowen:
Neighborhood embedding and re-ranking of disease genes with ADAGIO. 11:1-11:11 - Alisa Yurovsky, Justin Gardin, Bruce Futcher, Steven Skiena:
Statistical methodology for ribosomal frameshift detection. 12:1-12:10 - Van-Giang Trinh
, Kunihiko Hiraishi, Belaid Benhamou:
Computing attractors of large-scale asynchronous boolean networks using minimal trap spaces. 13:1-13:10 - Blessing Kolawole, Lenore J. Cowen:
Combining spectral clustering and large cut algorithms to find compensatory functional modules from yeast physical and genetic interaction data with GLASS. 14:1-14:4 - Ashley Babjac, Taylor M. Royalty, Andrew D. Steen, Scott J. Emrich
:
A comparison of dimensionality reduction methods for large biological data. 15:1-15:7
Health monitoring & phenotyping
- Yuxi Liu, Zhenhao Zhang, Antonio Jimeno-Yepes, Flora D. Salim:
Modeling long-term dependencies and short-term correlations in patient journey data with temporal attention networks for health prediction. 16:1-16:10 - Zongxing Xie, Hanrui Wang, Song Han, Elinor Schoenfeld, Fan Ye:
DeepVS: a deep learning approach for RF-based vital signs sensing. 17:1-17:5 - Eric V. Strobl, Thomas A. Lasko:
Identifying patient-specific root causes of disease. 18:1-18:10 - Ramin Ramazi, Mary Elizabeth Bowen, Rahmatollah Beheshti
:
Predicting acute events using the movement patterns of older adults: an unsupervised clustering method. 19:1-19:9
Structural bioinformatics
- Avik Bhattacharya
, Molly C. Lyons, Samuel J. Landry, Ramgopal R. Mettu
:
Incorporating antigen processing into CD4+ T cell epitope prediction with integer linear programming. 20:1-20:10 - Mahdi Rahbar
, Rahul Kumar Chauhan, Pankil Nimeshbhai Shah, Renzhi Cao, Dong Si, Jie Hou:
Deep graph learning to estimate protein model quality using structural constraints from multiple sequence alignments. 21:1-21:10 - Maor Turner, Mira Barshai, Yaron Orenstein:
rG4detector: convolutional neural network to predict RNA G-quadruplex propensity based on rG4-seq data. 22:1-22:9 - Andrew Hornback, Wenqi Shi
, Felipe O. Giuste, Yuanda Zhu, Ashley M. Carpenter, Coleman Hilton
, Vinieth N. Bijanki, Hiram Stahl, Gary S. Gottesman, Chad Purnell, Henry J. Iwinski, J. Michael Wattenbarger, May D. Wang:
Development of a generalizable multi-site and multi-modality clinical data cloud infrastructure for pediatric patient care. 23:1-23:10 - Adele P. Peskin, Joe Chalfoun, Michael Halter, Anne L. Plant:
Semi-supervised 3D neural networks to track iPS cell division in label-free phase contrast time series images. 24:1-24:7
Single cell omics
- Siyuan Shan, Vishal Athreya Baskaran, Haidong Yi, Jolene Ranek
, Natalie Stanley, Junier B. Oliva:
Transparent single-cell set classification with kernel mean embeddings. 25:1-25:10 - Vishal Athreya Baskaran, Jolene Ranek
, Siyuan Shan, Natalie Stanley, Junier B. Oliva:
Distribution-based sketching of single-cell samples. 26:1-26:10 - Honglin Wang
, Pujan Joshi, Chenyu Zhang, Peter F. Maye, David W. Rowe, Dong-Guk Shin:
rCom: a route-based framework inferring cell type communication and regulatory network using single cell data. 27:1-27:4 - Haidong Yi, Natalie Stanley:
CytoEMD: detecting and visualizing between-sample variation in relation to phenotype with earth mover's distance. 28:1-28:14 - Sapan Bhandari, Nathan P. Whitener, Konghao Zhao, Natalia Khuri:
Multi-target integration and annotation of single-cell RNA-sequencing data. 29:1-29:4
Machine learning & drug design
- Tom Johnsten, Aishwarya Prakash, Grant T. Daly, Ryan G. Benton
, Tristan Clark:
Computational framework for generating synthetic signal peptides. 30:1-30:7 - Aysegul Bumin, Anna M. Ritz, Donna K. Slonim, Tamer Kahveci, Kejun Huang:
FiT: fiber-based tensor completion for drug repurposing. 31:1-31:10 - Aisharjya Sarkar, Aaditya Singh, Richard Bailey, Alin Dobra, Tamer Kahveci:
Optimal separation of high dimensional transcriptome for complex multigenic traits. 32:1-32:5 - Sudha Tushara Sadasivuni, Yanqing Zhang:
Timestamp analysis of mental health tweets of Twitter users along with COVID-19 confirmed cases. 33:1-33:6 - Hehuan Ma, Feng Jiang, Yu Rong, Yuzhi Guo, Junzhou Huang
:
Robust self-training strategy for various molecular biology prediction tasks. 34:1-34:5
Medical imaging
- Diego Machado Reyes
, Mansu Kim, Hanqing Chao, Li Shen, Pingkun Yan:
Connectome transformer with anatomically inspired attention for Parkinson's diagnosis. 35:1-35:4 - Javier Pastorino, Ashis Kumer Biswas
:
Data adequacy bias impact in a data-blinded semi-supervised GAN for privacy-aware COVID-19 chest X-ray classification. 36:1-36:8 - Jun Bai, Annie Jin, Andre Jin, Tianyu Wang, Clifford Yang, Sheida Nabavi:
Applying graph convolution neural network in digital breast tomosynthesis for cancer classification. 37:1-37:10 - Lillian Zhu, Feng Zhu, Jodi Price:
TopographyNET: a deep learning model for EEG-based mind wandering detection. 38:1-38:10
Graphs & networks
- Yuanfang Ren, Aisharjya Sarkar, Aysegul Bumin, Kejun Huang, Pierangelo Veltri, Alin Dobra, Tamer Kahveci:
Identification of co-existing embeddings of a motif in multilayer networks. 39:1-39:10 - Satyaki Roy, Preetam Ghosh
:
Examining post-pandemic behaviors influencing human mobility trends. 40:1-40:10 - Anqi Wei, Liangjiang Wang:
Deep sequence representation learning for predicting human proteins with liquid-liquid phase separation propensity and synaptic functions. 41:1-41:8
COVID-19
- Nooriyan Poonawala-Lohani, Patricia Riddle, Mehnaz Adnan, Jörg Wicker
:
Geographic ensembles of observations using randomised ensembles of autoregression chains: ensemble methods for spatio-temporal time series forecasting of influenza-like illness. 42:1-42:7 - Natalia Khuri, Sapan Bhandari, Esteban Murillo Burford, Nathan P. Whitener, Konghao Zhao:
An evolutionary approach to data valuation. 43:1-43:10 - Jun Bai, Bingjun Li
, Sheida Nabavi:
Semi-supervised classification of disease prognosis using CR images with clinical data structured graph. 44:1-44:9 - Aekansh Goel, Zachary Mudge
, Sarah Bi, Charles Brenner, Nicholas Huffman, Felipe O. Giuste, Benoit Marteau, Wenqi Shi
, May D. Wang:
Identification of covid-19 severity and associated genetic biomarkers based on scrna-SEQ data. 45:1-45:5 - Yuanda Zhu, Aishwarya Mahale
, Kourtney Peters
, Lejy Mathew, Felipe O. Giuste, Blake J. Anderson, May D. Wang:
Using natural language processing on free-text clinical notes to identify patients with long-term COVID effects. 46:1-46:9
Clinical trials & outcome prediction
- Brendan E. Odigwe, Alireza Bagheri Rajeoni
, Celestine I. Odigwe, Francis G. Spinale, Homayoun Valafar:
Application of machine learning for patient response prediction to cardiac resynchronization therapy. 47:1-47:4 - Li Zeng, Zhaolong Yu, Yiliang Zhang, Hongyu Zhao
:
A general kernel boosting framework integrating pathways for predictive modeling based on genomic data. 48:1-48:8 - Zifeng Wang, Jimeng Sun
:
SurvTRACE: transformers for survival analysis with competing events. 49:1-49:9 - Supratim Das
, Xinghua Shi:
Offspring GAN augments biased human genomic data. 50:1-50:10
Genomic variation
- Neda Tavakoli, Daniel Gibney, Srinivas Aluru:
Haplotype-aware variant selection for genome graphs. 51:1-51:9 - Syed Fahad Sultan, Xingzhi Guo, Steven Skiena
:
Low-dimensional genotype embeddings for predictive models. 52:1-52:4 - Meijun Gao, Wei Wang
, Kevin J. Liu
:
The impact of gene sequence alignment and gene tree estimation error on summary-based species network estimation. 53:1-53:17
Ontologies & databases
- Yuxuan Lu
, Jingya Yan
, Zhixuan Qi
, Zhongzheng Ge
, Yongping Du
:
Contextual embedding and model weighting by fusing domain knowledge on biomedical question answering. 54:1-54:4 - Reza Mazloom, Leighton Pritchard, C. Titus Brown, Boris A. Vinatzer, Lenwood S. Heath:
LINgroups as a principled approach to compare and integrate multiple bacterial taxonomies. 55:1-55:7 - Suyeon Kim, Ishwor Thapa, Hesham Ali:
A multi-omics graph database for data integration and knowledge extraction. 56:1-56:6 - Hannah Guan, Chonghao Zhang:
Predicting diabetes in imbalanced datasets using neural networks. 57:1-57:10 - Rushank Goyal
, Rashmi Chowdhary:
Antibiotic resistance prediction and biomarker discovery in Neisseria gonorrhoeae. 58:1 - Rushank Goyal
:
A novel three-step transcriptomic framework for cancer prediction. 59:1 - Yana Hrytsenko, Noah M. Daniels, Rachel S. Schwartz:
Determining population structure from k-mer frequencies. 60:1 - Salvador Eugenio C. Caoili:
B-cell epitope prediction for antipeptide paratopes with the HAPTIC2/HEPTAD user toolkit (HUT). 61:1 - Maria Mannone, Veronica Distefano:
Trajectory-based and sound-based medical data clustering. 62:1 - Jingwen Zhang, Enze Xu
, Minghan Chen:
AT[N]-net: multimodal spatiotemporal network for subtype identification in Alzheimer's disease. 63:1 - Huyen Trang Dang, Shi Jie Samuel Tan
, Sara Mathieson:
Comparison of cohort-based identical-by-descent (IBD) segment finding methods for endogamous populations. 64:1 - Michael A. Zeller
, Anugrah Saxena
, Giovani Trevisan
, Aditi Sharma, Daniel Linhares
, Karen M. Krueger, Jianqiang Zhang
, Phillip C. Gauger
:
PRRSView: an analytical platform for the assessment of PRRSV ORF5 genetic sequences. 65:1 - Gangadhar Katuri, Epaminondas Rosa Jr., Rosangela Follmann:
Detecting synchronization in brain activity. 66:1 - Jhonatan Tavori, Hanoch Levy:
Greedy and speedy: optimal vaccination strategies in multi-region heterogeneous networks. 67:1 - Vinay Raj:
Analysis of impact of diabetes mellitus in Arkansas and U.S. 68:1 - Zheming Jin, Jeffrey S. Vetter:
Performance portability study of epistasis detection using SYCL on NVIDIA GPU. 69:1-69:8 - Maria Chiara Martinis, Chiara Zucco
, Mario Cannataro:
An Italian lexicon-based sentiment analysis approach for medical applications. 70:1-70:4 - Patrizia Vizza, Mattia Cannistrà, Raffaele Giancotti, Pierangelo Veltri:
Image processing segmentation algorithms evaluation through implementation choices. 71:1-71:7 - Lorella Bottino
, Marzia Settino, Mario Cannataro:
Scoliosis management through apps. 72:1-72:4 - Luca Barillaro, Giuseppe Agapito
, Mario Cannataro:
Scalable deep learning for healthcare: methods and applications. 73:1-73:8 - Joan Peckham, Andy D. Perkins, Tayo Obafemi-Ajayi
, Xiuzhen Huang:
NBT (no-boundary thinking): needed to attend to ethical implications of data and AI. 74:1-74:2 - Andy D. Perkins, Joan Peckham, Tayo Obafemi-Ajayi
, Xiuzhen Huang:
Team building without boundaries. 75:1-75:3 - Asai Asaithambi, Chandrika Rao, Swapnoneel Roy:
Implementing algorithms for sorting by strip swaps. 76:1-76:9
![](https://dblp.dagstuhl.de/img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.