default search action
5th COLT 1992: Pittsburgh, PA, USA
- David Haussler:
Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory, COLT 1992, Pittsburgh, PA, USA, July 27-29, 1992. ACM 1992, ISBN 0-89791-497-X - Nader H. Bshouty, Thomas R. Hancock, Lisa Hellerstein:
Learning Boolean Read-Once Formulas with Arbitrary Symmetric and Constant Fan-in Gates. 1-15 - Zhixiang Chen, Wolfgang Maass:
On-line Learning of Rectangles. 16-28 - Michael Kharitonov:
Cryptographic Lower Bounds for Learnability of Boolean Functions on the Uniform Distribution. 29-36 - Jyrki Kivinen, Heikki Mannila, Esko Ukkonen:
Learning Hierarchical Rule Sets. 37-44 - Kevin J. Lang:
Random DFA's Can Be Approximately Learned from Sparse Uniform Examples. 45-52 - Yishay Mansour:
An O(nlog log n) Learning Algorithm for DNF Under the Uniform Distribution. 53-61 - Mihir Bellare:
A Technique for Upper Bounding the Spectral Norm with Applications to Learning. 62-70 - Howard Aizenstein, Leonard Pitt:
Exact Learning of Read-k Disjoint DNF and Not-So-Disjoint DNF. 71-76 - Sally A. Goldman, H. David Mathias:
Learning k-Term DNF Formulas with an Incomplete Membership Oracle. 77-84 - Michele Flammini, Alberto Marchetti-Spaccamela, Ludek Kucera:
Learning DNF Formulae Under Classes of Probability Distributions. 85-92 - Santosh S. Venkatesh, Robert R. Snapp, Demetri Psaltis:
Bellman Strikes Again! The Growth Rate of Sample Complexity with Dimension for the Nearest Neighbor Classifier. 93-102 - Jyh-Han Lin, Jeffrey Scott Vitter:
A Theory for Memory-Based Learning. 103-115 - William W. Cohen, Haym Hirsh:
Learnability of Description Logics. 116-127 - Saso Dzeroski, Stephen H. Muggleton, Stuart Russell:
PAC-Learnability of Determinate Logic Programs. 128-135 - Hiroki Arimura, Hiroki Ishizaka, Takeshi Shinohara:
Polynomial Time Inference of a Subclass of Context-Free Transformations. 136-143 - Bernhard E. Boser, Isabelle Guyon, Vladimir Vapnik:
A Training Algorithm for Optimal Margin Classifiers. 144-152 - Don Kimber, Philip M. Long:
The Learning Complexity of Smooth Functions of a Single Variable. 153-159 - Ethan Bernstein:
Absolute Error Bounds for Learning Linear Functions Online. 160-163 - Kenji Yamanishi:
Probably Almost Discriminative Learning. 164-171 - Sanjeev R. Kulkarni, John N. Tsitsiklis, Sanjoy K. Mitter, Ofer Zeitouni:
PAC Learning With Generalized Samples and an Application to Stochastic Geometry. 172-179 - Peter Cholak, Efim B. Kinber, Rodney G. Downey, Martin Kummer, Lance Fortnow, Stuart A. Kurtz, William I. Gasarch, Theodore A. Slaman:
Degrees of Inferability. 180-192 - John Case, Sanjay Jain, Arun Sharma:
On Learning Limiting Programs. 193-202 - Robert P. Daley, Bala Kalyanasundaram, Mahendran Velauthapillai:
Breaking the Probability 1/2 Barrier in FIN-Type Learning. 203-217 - Klaus P. Jantke:
Case-Based Learning in Inductive Inference. 218-223 - Rolf Wiehagen, Carl H. Smith:
Generalization versus Classification. 224-230 - Avrim Blum, Prasad Chalasani:
Learning Switching Concepts. 231-242 - Peter L. Bartlett:
Learning With a Slowly Changing Distribution. 243-252 - Gyora M. Benedek, Alon Itai:
Dominating Distributions and Learnability. 253-264 - Alberto Bertoni, Paola Campadelli, Anna Morpurgo, Sandra Panizza:
Polynomial Iniform Convergence and Polynomial-Sample Learnability. 265-271 - Kevin Buescher, P. R. Kumar:
Learning Stochastic Functions by Smooth Simultaneous Estimation. 272-279 - Ronny Meir, José F. Fontanari:
On Learning Noisy Threshold Functions with Finite Precision Weights. 280-286 - H. Sebastian Seung, Manfred Opper, Haim Sompolinsky:
Query by Committee. 287-294 - Yasubumi Sakakibara, Rani Siromoney:
A Noise Model on Learning Sets of Strings. 295-302 - Shyam Kapur, Gianfranco Bilardi:
Language Learning from Stochastic Input. 303-310 - Martin Anthony, Graham R. Brightwell, David A. Cohen, John Shawe-Taylor:
On Exact Specification by Examples. 311-318 - Jeffrey C. Jackson, Andrew Tomkins:
A Computational Model of Teaching. 319-326 - Kathleen Romanik:
Approximate Testing and Learnability. 327-332 - Shai Ben-David, Nicolò Cesa-Bianchi, Philip M. Long:
Characterizations of Learnability for Classes of {O, ..., n}-Valued Functions. 333-340 - Michael J. Kearns, Robert E. Schapire, Linda Sellie:
Toward Efficient Agnostic Learning. 341-352 - Svetlana Anoulova, Paul Fischer, Stefan Pölt, Hans Ulrich Simon:
PAB-Decisions for Boolean and Real-Valued Features. 353-362 - Rusins Freivalds, Carl H. Smith:
On the Role of Procrastination for Machine Learning. 363-376 - Steffen Lange, Thomas Zeugmann:
Types of Monotonic Language Learning and Their Characterization. 377-390 - Yoav Freund:
An Improved Boosting Algorithm and Its Implications on Learning Complexity. 391-398 - David P. Helmbold, Manfred K. Warmuth:
Some Weak Learning Results. 399-412 - Neri Merhav, Meir Feder:
Universal Sequential Learning and Decision from Individual Data Sequences. 413-427 - Klaus-Uwe Höffgen, Hans Ulrich Simon:
Robust Trainability of Single Neurons. 428-439 - Hava T. Siegelmann, Eduardo D. Sontag:
On the Computational Power of Neural Nets. 440-449 - Robert H. Sloan:
Corrigendum to Types of Noise in Data for Concept Learning. 450
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.