


default search action
5th DCASE 2020, Tokyo, Japan
- Nobutaka Ono, Noboru Harada, Yohei Kawaguchi, Annamaria Mesaros, Keisuke Imoto, Yuma Koizumi, Tatsuya Komatsu:

Proceedings of 5th the Workshop on Detection and Classification of Acoustic Scenes and Events 2020 (DCASE 2020), Tokyo, Japan (full virtual), November 2-4, 2020. 2020, ISBN 978-4-600-00566-5 - Ohad Barak, Nizar Sallem, Marc Fischer:

Microphone Array Optimization for Autonomous-Vehicle Audio Localization Based on the Radon Transform. 1-5 - Emre Çakir, Konstantinos Drossos, Tuomas Virtanen:

Multi-Task Regularization Based on Infrequent Classes for Audio Captioning. 6-10 - Yin Cao, Turab Iqbal, Qiuqiang Kong, Yue Zhong, Wenwu Wang, Mark D. Plumbley:

Event-Independent Network for Polyphonic Sound Event Localization and Detection. 11-15 - Mark Cartwright, Jason Cramer, Ana Elisa Méndez Méndez, Yu Wang, Ho-Hsiang Wu, Vincent Lostanlen, Magdalena Fuentes, Graham Dove, Charlie Mydlarz, Justin Salamon, Oded Nov, Juan Pablo Bello:

SONYC-UST-V2: An Urban Sound Tagging Dataset with Spatiotemporal Context. 16-20 - Kun Chen, Yusong Wu, Ziyue Wang, Xuan Zhang, Fudong Nian, Shengchen Li, Xi Shao:

Audio Captioning Based on Transformer and Pre-Trained CNN. 21-25 - Samuele Cornell, Michel Olvera, Manuel Pariente, Giovanni Pepe, Emanuele Principi, Leonardo Gabrielli, Stefano Squartini:

Domain-Adversarial Training and Trainable Parallel Front-End for the DCASE 2020 Task 4 Sound Event Detection Challenge. 26-30 - Samuele Cornell, Michel Olvera, Manuel Pariente, Giovanni Pepe, Emanuele Principi, Leonardo Gabrielli, Stefano Squartini:

Task-Aware Separation for the DCASE 2020 Task 4 Sound Event Detection and Separation Challenge. 31-35 - Diego de Benito-Gorrón, Daniel Ramos, Doroteo T. Toledano:

A Multi-Resolution Approach to Sound Event Detection in DCASE 2020 Task4. 36-40 - Janek Ebbers, Reinhold Haeb-Umbach:

Forward-Backward Convolutional Recurrent Neural Networks and Tag-Conditioned Convolutional Neural Networks for Weakly Labeled Semi-Supervised Sound Event Detection. 41-45 - Ritwik Giri, Srikanth V. Tenneti, Fangzhou Cheng, Karim Helwani, Umut Isik, Arvindh Krishnaswamy:

Self-Supervised Classification for Detecting Anomalous Sounds. 46-50 - Ritwik Giri, Fangzhou Cheng, Karim Helwani, Srikanth V. Tenneti, Umut Isik, Arvindh Krishnaswamy:

Group Masked Autoencoder Based Density Estimator for Audio Anomaly Detection. 51-55 - Toni Heittola, Annamaria Mesaros, Tuomas Virtanen:

Acoustic Scene Classification in DCASE 2020 Challenge: Generalization Across Devices and Low Complexity Solutions. 56-60 - Yuxin Huang, Liwei Lin, Shuo Ma, Xiangdong Wang, Hong Liu, Yueliang Qian, Min Liu, Kazushige Ouchi:

Guided Multi-Branch Learning Systems for Sound Event Detection with Sound Separation. 61-65 - Tadanobu Inoue, Phongtharin Vinayavekhin, Shu Morikuni, Shiqiang Wang, Tuan Hoang Trong, David Wood, Michiaki Tatsubori, Ryuki Tachibana:

Detection of Anomalous Sounds for Machine Condition Monitoring using Classification Confidence. 66-70 - Slawomir Kapka:

ID-Conditioned Auto-Encoder for Unsupervised Anomaly Detection. 71-75 - Ju-ho Kim, Jee-Weon Jung, Hye-Jin Shim, Ha-Jin Yu:

Audio Tag Representation Guided Dual Attention Network for Acoustic Scene Classification. 76-80 - Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki Nakamura, Yuki Nikaido, Ryo Tanabe, Harsh Purohit, Kaori Suefusa, Takashi Endo, Masahiro Yasuda, Noboru Harada:

Description and Discussion on DCASE2020 Challenge Task2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring. 81-85 - Khaled Koutini, Florian Henkel, Hamid Eghbal-Zadeh, Gerhard Widmer:

Low-Complexity Models for Acoustic Scene Classification Based on Receptive Field Regularization and Frequency Damping. 86-90 - Alisa Liu, Prem Seetharaman, Bryan Pardo:

Model Selection for Deep Audio Source Separation via Clustering Analysis. 91-95 - Jose A. Lopez, Hong Lu, Paulo Lopez-Meyer, Lama Nachman, Georg Stemmer, Jonathan Huang:

A Speaker Recognition Approach to Anomaly Detection. 96-99 - Koichi Miyazaki, Tatsuya Komatsu, Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, Kazuya Takeda:

Conformer-Based Sound Event Detection with Semi-Supervised Learning and Data Augmentation. 100-104 - Filippo Naccari, Ivana Guarneri, Salvatore Curti, Alberto Amilcare Savi:

Embedded Acoustic Scene Classification for Low Power Microcontroller Devices. 105-109 - Khoa Nguyen, Konstantinos Drossos, Tuomas Virtanen:

Temporal Sub-Sampling of Audio Feature Sequences for Automated Audio Captioning. 110-114 - Thi Ngoc Tho Nguyen, Douglas L. Jones, Woon-Seng Gan:

On the Effectiveness of Spatial and Multi-Channel Features for Multi-Channel Polyphonic Sound Event Detection. 115-119 - Thi Ngoc Tho Nguyen, Douglas L. Jones, Woon-Seng Gan:

Ensemble of Sequence Matching Networks for Dynamic Sound Event Localization, Detection, and Tracking. 120-124 - Yuki Okamoto, Keisuke Imoto, Shinnosuke Takamichi, Ryosuke Yamanishi, Takahiro Fukumori, Yoichi Yamashita:

RWCP-SSD-Onomatopoeia: Onomatopoeic Word Dataset for Environmental Sound Synthesis. 125-129 - Kenneth Ooi, Santi Peksi, Woon-Seng Gan:

Ensemble of Pruned Low-Complexity Models for Acoustic Scene Classification. 130-134 - Nicolas Pajusco, Richard Huang, Nicolas Farrugia:

Lightweight Convolutional Neural Networks on Binaural Waveforms for Low Complexity Acoustic Scene Classification. 135-139 - Jihwan Park, Sooyeon Yoo:

DCASE 2020 Task2: Anomalous Sound Detection using Relevant Spectral Feature and Focusing Techniques in the Unsupervised Learning Scenario. 140-144 - Sergi Perez-Castanos, Javier Naranjo-Alcazar, Pedro Zuccarello, Maximo Cobos:

Anomalous Sound Detection using Unsupervised and Semi-Supervised Autoencoders and Gammatone Audio Representation. 145-149 - Sergi Perez-Castanos, Javier Naranjo-Alcazar, Pedro Zuccarello, Maximo Cobos:

Listen Carefully and Tell: An Audio Captioning System Based on Residual Learning and Gammatone Audio Representation. 150-154 - Andrés Pérez-López, Rafael Ibáñez-Usach:

Papafil: A Low Complexity Sound Event Localization and Detection Method with Parametric Particle Filtering and Gradient Boosting. 155-159 - Huy Phan, Lam Pham, Philipp Koch, Ngoc Q. K. Duong, Ian McLoughlin, Alfred Mertins:

On Multitask Loss Function for Audio Event Detection and Localization. 160-164 - Archontis Politis, Sharath Adavanne, Tuomas Virtanen:

A Dataset of Reverberant Spatial Sound Scenes with Moving Sources for Sound Event Localization and Detection. 165-169 - Paul Primus, Verena Haunschmid, Patrick Praher, Gerhard Widmer:

Anomalous Sound Detection as a Simple Binary Classification Problem with Careful Selection of Proxy Outlier Examples. 170-174 - Harsh Purohit, Ryo Tanabe, Takashi Endo, Kaori Suefusa, Yuki Nikaido, Yohei Kawaguchi:

Deep Autoencoding GMM-Based Unsupervised Anomaly Detection in Acoustic Signals and its Hyper-Parameter Optimization. 175-179 - Francesca Ronchini, Daniel Arteaga, Andrés Pérez-López:

Sound Event Localization and Detection Based on CRNN using Rectangular Filters and Channel Rotation Data Augmentation. 180-184 - Saeid Safavi, Turab Iqbal, Wenwu Wang, Philip Coleman, Mark D. Plumbley:

Open-Window: A Sound Event Dataset for Window State Detection and Recognition. 185-189 - Daiki Takeuchi, Yuma Koizumi, Yasunori Ohishi, Noboru Harada, Kunio Kashino:

Effects of Word-Frequency Based Pre- and Post- Processings for Audio Captioning. 190-194 - Noriyuki Tonami, Keisuke Imoto, Takahiro Fukumori, Yoichi Yamashita:

Evaluation Metric of Sound Event Detection Considering Severe Misdetection by Scenes. 195-199 - Nicolas Turpault, Romain Serizel:

Training Sound Event Detection on a Heterogeneous Dataset. 200-204 - Nicolas Turpault, Scott Wisdom, Hakan Erdogan, John R. Hershey, Romain Serizel, Eduardo Fonseca, Prem Seetharaman, Justin Salamon:

Improving Sound Event Detection in Domestic Environments using Sound Separation. 205-209 - Helin Wang, Yuexian Zou, DaDing Chong:

Acoustic Scene Classification with Spectrogram Processing Strategies. 210-214 - Kevin Wilkinghoff:

Using Look, Listen, and Learn Embeddings for Detecting Anomalous Sounds in Machine Condition Monitoring. 215-219 - Yuzhong Wu, Tan Lee:

Searching for Efficient Network Architectures for Acoustic Scene Classification. 220-224 - Xuenan Xu, Heinrich Dinkel, Mengyue Wu, Kai Yu:

A CRNN-GRU Based Reinforcement Learning Approach to Audio Captioning. 225-229 - Liping Yang, Junyong Hao, Zhenwei Hou, Wang Peng:

Two-Stage Domain Adaptation for Sound Event Detection. 230-234 - Hao Yen, Pin-Jui Ku, Ming-Chi Yen, Hung-Shin Lee, Hsin-Min Wang:

Joint Training of Guided Learning and Mean Teacher Models for Sound Event Detection. 235-239 - Pablo Zinemanas, Ignacio Hounie, Pablo Cancela, Frederic Font, Martín Rocamora, Xavier Serra:

DCASE-Models: A Python Library for Computational Environmental Sound Analysis using Deep-Learning Models. 240-244

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














