


default search action
16th DEBS 2022: Copenhagen, Denmark
- Yongluan Zhou, Panos K. Chrysanthis, Vincenzo Gulisano, Eleni Tzirita Zacharatou

:
16th ACM International Conference on Distributed and Event-based Systems, DEBS 2022, Copenhagen, Denmark, June 27 - 30, 2022. ACM 2022, ISBN 978-1-4503-9308-9
Keynotes
- Ioana Manolescu:

Teasing journalistic findings out of heterogeneous sources: a data/AI journey. 1 - Pat Helland:

I'm so glad I'm uncoordinated!: coordination is increasingly painful... what can be done? 2 - Frank McSherry:

Materialize: a platform for building scalable event based systems. 3 - Till Rohrmann:

Rethinking how distributed applications are built. 4 - Falaah Arif Khan:

It's funny because it's true: confronting scientific catechisms through comic books! 5
Panels
- Antoine Amarilli, Christophe Claramunt, Demetrios Zeinalipour-Yazti:

Climate change and computing: facts, perspectives and an open discussion. 6
Research track
- Evangelos Kolyvas

, Spyros Voulgaris:
CougaR: fast and eclipse-resilient dissemination for blockchain networks. 7-18 - Vasileios Stavropoulos, Elias Alevizos, Nikos Giatrakos

, Alexander Artikis:
Optimizing complex event forecasting. 19-30 - Steven Purtzel, Samira Akili, Matthias Weidlich:

Predicate-based push-pull communication for distributed CEP. 31-42 - Liuyang Ren, Paul A. S. Ward, Bernard Wong:

Toward reducing cross-shard transaction overhead in sharded blockchains. 43-54 - Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, Boris Novikov

:
Substream management in distributed streaming dataflows. 55-66 - Muhammed Tawfiqul Islam

, Renata Borovica-Gajic
, Shanika Karunasekera:
A multi-level caching architecture for stateful stream computation. 67-78 - Espen Volnes, Thomas Plagemann, Boris Koldehofe

, Vera Goebel:
Travel light: state shedding for efficient operator migration. 79-84 - Roman Heinrich

, Manisha Luthra, Harald Kornmayer
, Carsten Binnig
:
Zero-shot cost models for distributed stream processing. 85-90 - Bochra Boughzala

, Christoph Gärtner, Boris Koldehofe
:
Window-based parallel operator execution with in-network computing. 91-96 - Tilman Zuckmantel, Yongluan Zhou

, Boris Düdder
, Thomas T. Hildebrandt:
Event-based data-centric semantics for consistent data management in microservices. 97-102
Industry track
- Michail Tsenos, Aristotelis Peri, Vana Kalogeraki:

AMESoS: a scalable and elastic framework for latency sensitive streaming pipelines. 103-114 - Joffrey de Oliveira, Christophe Callé, Weiqin Xu, Philippe Calvez, Olivier Curé:

Knowledge graph stream processing at the edge. 115-125 - Vladimir Sladojevic, Sebastian Frischbier, Alexander Echler, Mario Paic, Alessandro Margara:

Deriving a realistic workload model to simulate high-volume financial data feeds for performance benchmarking. 126-131
Grand challenge track
- Sebastian Frischbier, Jawad Tahir, Christoph Doblander, Arne Hormann, Ruben Mayer, Hans-Arno Jacobsen:

Detecting trading trends in financial tick data: the DEBS 2022 grand challenge. 132-138 - Luca De Martini

, Alessandro Margara, Gianpaolo Cugola:
Analysis of market data with Noir: DEBS grand challenge. 139-144 - Emmanouil Kritharakis, Shengyao Luo, Vivek Unnikrishnan, Karan Vombatkere:

Detecting trading trends in streaming financial data using Apache Flink. 145-150 - Quan Pham, Quang Nguyen

, Ryte Richard, Shekhar Sharma, Xavier Ruiz:
Detecting technical trading patterns in financial data with Apache Flink: DEBS grand challenge 2022. 151-155 - Stefanos Kalogerakis

, Antonis Papaioannou, Kostas Magoutis:
Efficient processing of high-volume tick data with Apache Flink for the DEBS 2022 grand challenge. 156-161 - Cecilia Calavaro, Gabriele Russo Russo, Valeria Cardellini

:
Real-time analysis of market data leveraging Apache Flink. 162-165 - Kevin Li, Daniel Fernandez, David Klingler, Yuhan Gao, Jacob Rivera, Kia Teymourian:

A high-performance processing system for monitoring stock market data stream. 166-170 - Suyeon Wang, Jaekyeong Kim, Yoonsang Yang, Jinseong Hwang, Jungkyu Han, Sejin Chun:

Real-time stock market analytics for improving deployment and accessibility using PySpark and Docker. 171-175
Tutorials
- Alessandro Margara:

A unifying model for distributed data-intensive systems. 176-179
Demonstrations and Posters
- Pratyush Agnihotri

, Boris Koldehofe
, Carsten Binnig
, Manisha Luthra:
PANDA: performance prediction for parallel and dynamic stream processing. 180-181 - Paschalis Mpeis, Athina Hadjichristodoulou, Jaime Bleye Vicario, Demetrios Zeinalipour-Yazti:

SMAS: a smart alert system for localization and first response to fires on ro-ro vessels. 182-185 - Timo Räth, Kai-Uwe Sattler:

StreamVizzard: an interactive and explorative stream processing editor. 186-189 - Yanghao Wang, Zhi Liu:

A sneak peek at RisingWave: a cloud-native streaming database. 190-193
Doctoral Symposium
- Timo Räth:

Interactive and explorative stream processing. 194-197

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














