


default search action
DSW 2019: Minneapolis, MN, USA
- IEEE Data Science Workshop, DSW 2019, Minneapolis, MN, USA, June 2-5, 2019. IEEE 2019, ISBN 978-1-7281-0708-0

Tensor Factorizations
- Georgios Tsitsikas, Evangelos E. Papalexakis

:
The Core Consistency of a Compressed Tensor. 1-5 - Alexander Ritchie, Clayton D. Scott, Laura Balzano, Daniel Kessler

, Chandra Sekhar Sripada:
Supervised Principal Component Analysis Via Manifold Optimization. 6-10 - Genevera I. Allen, Michael Weylandt

:
Sparse and Functional Principal Components Analysis. 11-16 - Chang Ye

, Gonzalo Mateos
:
Online Tensor Decomposition and Imputation for Count Data. 17-21
Distributed Algorithms
- Or Ohev Shalom, Amir Leshem

, Anna Scaglione
:
Localization of Data Injection Attacks on Distributed M-Estimation. 22-26 - Davoud Ataee Tarzanagh, Mohamad Kazem Shirani Faradonbeh

, George Michailidis:
Online Distributed Estimation of Principal Eigenspaces. 27-31 - Ping Xu, Zhi Tian, Zhe Zhang

, Yue Wang:
Coke: Communication-Censored Kernel Learning Via Random Features. 32-36 - Fakhteh Saadatniaki, Ran Xin, Usman A. Khan:

Distributed Training with Mobile Agents: Optimization Over Dynamic Directed Graphs. 37-41 - Emre Ozfatura, Deniz Gündüz

, Sennur Ulukus:
Gradient Coding with Clustering and Multi-Message Communication. 42-46 - Anuththara Rupasinghe

, Behtash Babadi:
Multitaper Analysis of Evolutionary Spectral Density Matrix From Multivariate Spiking Observations. 47-51
Graph Learning
- Mahmoud Ramezani-Mayiami

, Mohammad Hajimirsadeghi, Karl Skretting, Rick S. Blum
, H. Vincent Poor:
Graph Topology Learning and Signal Recovery Via Bayesian Inference. 52-56 - Andersen Chang

, Tianyi Yao, Genevera I. Allen:
Graphical Models and Dynamic Latent Factors for Modeling Functional Brain Connectivity. 57-63 - Qin Lu, Vassilis N. Ioannidis, Georgios B. Giannakis

:
Semi-Supervised Tracking of Dynamic Processes Over Switching Graphs. 64-68 - Brandon Oselio, Alfred O. Hero III, Amir Sadeghian, Silvio Savarese:

Time-Varying Interaction Estimation Using Ensemble Methods. 69-75 - Tianyi Yao, Genevera I. Allen:

Clustered Gaussian Graphical Model Via Symmetric Convex Clustering. 76-82 - Yanning Shen

, Geert Leus
:
Scalable Learning with Privacy Over Graphs. 83-87
Anomaly Detection
- Gayathri R. Prabhu, Srikrishna Bhashyam, Aditya Gopalan, Rajesh Sundaresan:

Learning to Detect an Anomalous Target with Observations from an Exponential Family. 88-92 - Karl Pazdernik, Bryan Stanfill, Lisa Bramer, Kellie J. MacPhee

:
Simultaneous Multivariate Outlier and Trend Detection. 93-99 - Patrick Schlachter, Yiwen Liao, Bin Yang:

Deep One-Class Classification Using Intra-Class Splitting. 100-104 - Topi Halme, Martin Gölz

, Visa Koivunen:
Bayesian Multiple Hypothesis Testing For Distributed Detection In Sensor Networks. 105-109
Learning, Modeling and Inference with Data I
- Michael Krikheli, Amir Leshem

:
Lfinite Sample Bounds on the Performance of Weighted Linear Least Squares in Sub-Gaussian Correlated Noise. 110-114 - Mario Coutino, Geert Leus

:
Asynchronous Distributed Edge-Variant Graph Filters. 115-119 - Lenin Arango-Castillo

, Glen Takahara:
Long-Range Dependence Parameter Estimation For Mixed Spectra Gaussian Processes. 120-124 - Carlos Eduardo Rosar Kós Lassance, Vincent Gripon, Jian Tang, Antonio Ortega

:
Structural Robustness for Deep Learning Architectures. 125-129 - Panagiotis A. Traganitis

:
Blind Ensemble Classification of Sequential Data. 130-134 - Sara Mourad, Haris Vikalo

, Ahmed H. Tewfik:
Online selective training for faster neural network learning. 135-139
Graph Signal Processing
- Rasoul Shafipour, Abolfazl Hashemi

, Gonzalo Mateos
, Haris Vikalo
:
Online Topology Inference from Streaming Stationary Graph Signals. 140-144 - Daniel B. Burkhardt

, Jay S. Stanley III, Guy Wolf, Smita Krishnaswamy:
Vertex-Frequency Clustering. 145-149 - Alejandro Parada-Mayorga

, Daniel L. Lau
, Jhony H. Giraldo
, Gonzalo R. Arce
:
Sampling of Graph Signals with Blue Noise Dithering. 150-154 - Dingyu Wang, John Lipor, Gautam Dasarathy

:
Distance-Penalized Active Learning via Markov Decision Processes. 155-159 - Myriam Bontonou, Carlos Eduardo Rosar Kós Lassance, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega:

Introducing Graph Smoothness Loss for Training Deep Learning Architectures. 160-164 - Dominique Guillot, Alejandro Parada-Mayorga

, Sebastian M. Cioaba
, Gonzalo R. Arce
:
Optimal Sampling Sets in Cographs. 165-169
Learning, Modeling and Inference with Data II
- Mohamad Kazem Shirani Faradonbeh

, Ambuj Tewari, George Michailidis:
Randomized Algorithms for Data-Driven Stabilization of Stochastic Linear Systems. 170-174 - Seung-Jun Kim, Rami Mowakeaa:

Kernel-Based Efficient Lifelong Learning Algorithm. 175-179 - Rebecca Chen

, Lav R. Varshney
:
Non-Negative Matrix Factorization of Clustered Data with Missing Values. 180-184 - Sina Miran, Jonathan Z. Simon, Michael C. Fu, Steven I. Marcus, Behtash Babadi:

Estimation of State-Space Models with Gaussian Mixture Process Noise. 185-189
Applications in Social Media and Recommendation Systems
- Imara Nazar, Daphney-Stavroula Zois

, Mengfan Yao:
A Hierarchical Approach for Timely Cyberbullying Detection. 190-195 - Tien Huu Do

, Xiao Luo, Duc Minh Nguyen
, Nikos Deligiannis
:
Rumour Detection Via News Propagation Dynamics and User Representation Learning. 196-200 - Davis Gilton, Greg Ongie

, Rebecca Willett:
Learning to Regularize Using Neumann Networks. 201-207 - Sarod Yatawatta, Lukas De Clercq, Hanno Spreeuw, Faruk Diblen:

A Stochastic LBFGS Algorithm for Radio Interferometric Calibration. 208-212
Applications in Biology and Medicine
- Charles R. Hatt, Sundaresh Ram, Craig J. Galbán:

A Convolutional Neural Network Approach to Automated Lung Bounding Box Estimation from Computed Tomography Scans. 213-216 - Jiankun Wang, Shahrokh Valaee:

Enhancing Medical Imaging Semantic Segmentation Using the Digital Annealer. 217-221 - Shih-Gu Huang, Moo K. Chung, Ian C. Carroll

, H. Hill Goldsmith:
Dynamic Functional Connectivity Using Heat Kernel. 222-226 - Giancarlo A. Antonucci

, Simon Vary, David Humphreys, Robert A. Lamb, Jonathan Piper, Jared Tanner:
Multispectral Snapshot Demosaicing Via Non-Convex Matrix Completion. 227-231 - Sean Mobilia, Birsen Sirkeci-Mergen, Joshua Deal, Thomas C. Rich, Silas J. Leavesley:

Classification of Hyperspectral Colon Cancer Images Using Convolutional Neural Networks. 232-236
Topics in Data Science
- Michael Weylandt

:
Splitting Methods For Convex Bi-Clustering And Co-Clustering. 237-242 - Huozhi Zhou, Ashish Jagmohan, Lav R. Varshney:

Generalized Jordan Center: A Source Localization Heuristic For Noisy And Incomplete Observations. 243-247 - Liam Madden, Stephen Becker, Emiliano Dall'Anese:

Online Sparse Subspace Clustering. 248-252 - Robiul Hossain Md. Rafi, Ali Cafer Gürbüz

:
Data Driven Measurement Matrix Learning for Sparse Reconstruction. 253-257
Data Analytics for Power Systems
- Liang Zhang, Gang Wang

, Georgios B. Giannakis
:
Distribution System State Estimation Via Data-Driven and Physics-Aware Deep Neural Networks. 258-262 - Cristian Genes, Iñaki Esnaola

, Samir M. Perlaza
, Daniel Coca:
Recovery of Missing Data in Correlated Smart Grid Datasets. 263-269 - Jiaming Li, Yue Zhao, Young-Hwan Lee, Seung-Jun Kim:

Learning to Infer Voltage Stability Margin Using Transfer Learning. 270-274 - Raksha Ramakrishna, Anna Scaglione

:
On Modeling Voltage Phasor Measurements as Graph Signals. 275-279 - Dorcas Ofori-Boateng, Asim Kumer Dey, Yulia R. Gel, Binghui Li

, Jie Zhang
, H. Vincent Poor:
Assessing the Resilience of the Texas Power Grid Network. 280-284 - Dario Bauso, Toru Namerikawa:

Data-Driven Mean-Field Game Approximation for a Population of Electric Vehicles. 285-289
Omics Data Processing and Analysis Tensor Methods
Tensor Methods
- Magda Amiridi, Nikos Kargas, Nicholas D. Sidiropoulos

:
Statistical Learning Using Hierarchical Modeling of Probability Tensors. 290-294 - Kejun Huang, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:

Learning Partially Observable Markov Decision Processes Using Coupled Canonical Polyadic Decomposition. 295-299 - Shahana Ibrahim, Xiao Fu:

Stochastic Optimization for Coupled Tensor Decomposition with Applications in Statistical Learning. 300-304 - Ali Koochakzadeh, Piya Pal:

Canonical Polyadic (CP) Decomposition of Structured Semi-Symmetric Fourth-Order Tensors. 305-309 - Nico Vervliet, Michiel Vandecappelle

, Martijn Boussé
, Rob Zink, Lieven De Lathauwer:
Recent Numerical and Conceptual Advances for Tensor Decompositions - A Preview of Tensorlab 4.0. 310-314
Statistical Inference in Complex Network Data
Nonconvex Optimization for Data Science
- Songtao Lu, Xinwei Zhang, Haoran Sun

, Mingyi Hong:
GNSD: a Gradient-Tracking Based Nonconvex Stochastic Algorithm for Decentralized Optimization. 315-321 - Xuechao He, Qing Ling, Tianyi Chen:

Byzantine-Robust Stochastic Gradient Descent for Distributed Low-Rank Matrix Completion. 322-326 - Babak Barazandeh, Meisam Razaviyayn, Maziar Sanjabi:

Training Generative Networks Using Random Discriminators. 327-332 - Man-Wai Un, Mingjie Shao

, Wing-Kin Ma
, P. C. Ching:
Deep Mimo Detection Using ADMM Unfolding. 333-337 - Aria Ameri, Arindam Bose

, Mojtaba Soltanalian
:
Comprehensive Personalized Ranking Using One-Bit Comparison Data. 338-342

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














