


default search action
FAT* 2019: Atlanta, GA, USA
- danah boyd, Jamie H. Morgenstern:

Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019. ACM 2019 - Smitha Milli, Ludwig Schmidt, Anca D. Dragan, Moritz Hardt:

Model Reconstruction from Model Explanations. 1-9 - Berk Ustun

, Alexander Spangher, Yang Liu:
Actionable Recourse in Linear Classification. 10-19 - Chris Russell

:
Efficient Search for Diverse Coherent Explanations. 20-28 - Vivian Lai, Chenhao Tan:

On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection. 29-38 - Samir Passi

, Solon Barocas
:
Problem Formulation and Fairness. 39-48 - Ben Hutchinson, Margaret Mitchell:

50 Years of Test (Un)fairness: Lessons for Machine Learning. 49-58 - Andrew D. Selbst, danah boyd

, Sorelle A. Friedler, Suresh Venkatasubramanian
, Janet Vertesi
:
Fairness and Abstraction in Sociotechnical Systems. 59-68 - Severin Engelmann, Mo Chen

, Felix Fischer, Ching-yu Kao, Jens Grossklags:
Clear Sanctions, Vague Rewards: How China's Social Credit System Currently Defines "Good" and "Bad" Behavior. 69-78 - Stevie Chancellor

, Michael L. Birnbaum, Eric D. Caine, Vincent M. B. Silenzio, Munmun De Choudhury:
A Taxonomy of Ethical Tensions in Inferring Mental Health States from Social Media. 79-88 - Ziad Obermeyer, Sendhil Mullainathan:

Dissecting Racial Bias in an Algorithm that Guides Health Decisions for 70 Million People. 89 - Ben Green, Yiling Chen:

Disparate Interactions: An Algorithm-in-the-Loop Analysis of Fairness in Risk Assessments. 90-99 - Michael J. Kearns, Seth Neel, Aaron Roth

, Zhiwei Steven Wu
:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. 100-109 - Jake Goldenfein

:
The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism. 110-119 - Maria De-Arteaga, Alexey Romanov, Hanna M. Wallach, Jennifer T. Chayes

, Christian Borgs
, Alexandra Chouldechova, Sahin Cem Geyik, Krishnaram Kenthapadi, Adam Tauman Kalai:
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting. 120-128 - Abhijnan Chakraborty, Gourab K. Patro, Niloy Ganguly

, Krishna P. Gummadi
, Patrick Loiseau:
Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations. 129-138 - Mahmoudreza Babaei, Abhijnan Chakraborty, Juhi Kulshrestha, Elissa M. Redmiles, Meeyoung Cha

, Krishna P. Gummadi
:
Analyzing Biases in Perception of Truth in News Stories and Their Implications for Fact Checking. 139 - Filipe Nunes Ribeiro, Koustuv Saha, Mahmoudreza Babaei, Lucas Henrique C. Lima, Johnnatan Messias

, Fabrício Benevenuto
, Oana Goga
, Krishna P. Gummadi
, Elissa M. Redmiles:
On Microtargeting Socially Divisive Ads: A Case Study of Russia-Linked Ad Campaigns on Facebook. 140-149 - Dimitrios Bountouridis, Jaron Harambam

, Mykola Makhortykh
, Mónica Marrero
, Nava Tintarev, Claudia Hauff:
SIREN: A Simulation Framework for Understanding the Effects of Recommender Systems in Online News Environments. 150-159 - L. Elisa Celis, Sayash Kapoor, Farnood Salehi

, Nisheeth K. Vishnoi:
Controlling Polarization in Personalization: An Algorithmic Framework. 160-169 - Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth

, Zachary Schutzman
:
Fair Algorithms for Learning in Allocation Problems. 170-179 - Moshe Babaioff, Noam Nisan

, Inbal Talgam-Cohen:
Fair Allocation through Competitive Equilibrium from Generic Incomes. 180 - Hoda Heidari, Michele Loi

, Krishna P. Gummadi
, Andreas Krause:
A Moral Framework for Understanding Fair ML through Economic Models of Equality of Opportunity. 181-190 - Meg Young, Luke Rodriguez, Emily Keller, Feiyang Sun, Boyang Sa, Jan Whittington, Bill Howe:

Beyond Open vs. Closed: Balancing Individual Privacy and Public Accountability in Data Sharing. 191-200 - Shan Jiang, John Martin, Christo Wilson

:
Who's the Guinea Pig?: Investigating Online A/B/n Tests in-the-Wild. 201-210 - Aws Albarghouthi, Samuel Vinitsky:

Fairness-Aware Programming. 211-219 - Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru:

Model Cards for Model Reporting. 220-229 - Smitha Milli, John Miller, Anca D. Dragan, Moritz Hardt:

The Social Cost of Strategic Classification. 230-239 - Sampath Kannan, Aaron Roth

, Juba Ziani:
Downstream Effects of Affirmative Action. 240-248 - Nicole Immorlica, Katrina Ligett

, Juba Ziani:
Access to Population-Level Signaling as a Source of Inequality. 249-258 - Lily Hu, Nicole Immorlica, Jennifer Wortman Vaughan:

The Disparate Effects of Strategic Manipulation. 259-268 - Bruce Glymour, Jonathan Herington

:
Measuring the Biases that Matter: The Ethical and Casual Foundations for Measures of Fairness in Algorithms. 269-278 - Brent D. Mittelstadt, Chris Russell

, Sandra Wachter
:
Explaining Explanations in AI. 279-288 - Sebastian Benthall

, Bruce D. Haynes:
Racial categories in machine learning. 289-298 - Brenda Leong, Evan Selinger:

Robot Eyes Wide Shut: Understanding Dishonest Anthropomorphism. 299-308 - Ran Canetti, Aloni Cohen

, Nishanth Dikkala, Govind Ramnarayan, Sarah Scheffler
, Adam D. Smith:
From Soft Classifiers to Hard Decisions: How fair can we be? 309-318 - L. Elisa Celis, Lingxiao Huang

, Vijay Keswani, Nisheeth K. Vishnoi:
Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees. 319-328 - Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian

, Sonam Choudhary, Evan P. Hamilton, Derek Roth:
A comparative study of fairness-enhancing interventions in machine learning. 329-338 - Jiahao Chen

, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, Madeleine Udell
:
Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. 339-348 - David Madras, Elliot Creager, Toniann Pitassi, Richard S. Zemel:

Fairness through Causal Awareness: Learning Causal Latent-Variable Models for Biased Data. 349-358 - Hussein Mouzannar, Mesrob I. Ohannessian, Nathan Srebro:

From Fair Decision Making To Social Equality. 359-368 - Dallas Card

, Michael Zhang, Noah A. Smith:
Deep Weighted Averaging Classifiers. 369-378

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














