


default search action
FIRE 2019: Kolkata, India - Working Notes
- Parth Mehta, Paolo Rosso, Prasenjit Majumder, Mandar Mitra:

Working Notes of FIRE 2019 - Forum for Information Retrieval Evaluation, Kolkata, India, December 12-15, 2019. CEUR Workshop Proceedings 2517, CEUR-WS.org 2019
Artificial Intelligence for Legal Assistance (AILA)
- Paheli Bhattacharya, Kripabandhu Ghosh, Saptarshi Ghosh, Arindam Pal, Parth Mehta, Arnab Bhattacharya, Prasenjit Majumder:

Overview of the FIRE 2019 AILA Track: Artificial Intelligence for Legal Assistance. 1-12 - Ravina More, Jay Patil, Abhishek Palaskar, Aditi Pawde:

Removing Named Entities to Find Precedent Legal Cases. 13-18 - Baban Gain, Dibyanayan Bandyopadhyay, Arkadipta De, Tanik Saikh, Asif Ekbal:

IITP at AILA 2019: System Report for Artificial Intelligence for Legal Assistance Shared Task. 19-24 - Sara Renjit, Sumam Mary Idicula:

CUSAT NLP@AILA-FIRE2019: Similarity in Legal Texts using Document Level Embeddings. 25-30 - Soumil Mandal, Sourya Dipta Das:

Unsupervised Identification of Relevant Cases & Statutes Using Word Embeddings. 31-35 - S. Kayalvizhi, D. Thenmozhi, Chandrabose Aravindan:

Legal Assistance using Word Embeddings. 36-39 - Zicheng Zhao, Hui Ning, Liang Liu, Chengzhe Huang, Leilei Kong, Yong Han, Zhongyuan Han:

FIRE2019@AILA: Legal Information Retrieval Using Improved BM25. 40-45 - Yunqiu Shao, Ziyi Ye:

THUIR@AILA 2019: Information Retrieval Approaches for Identifying Relevant Precedents and Statutes. 46-51 - Moemedi Lefoane, Tshepho Koboyatshwene, Goaletsa Rammidi, V. Lakshmi Narasimham:

Legal Statutes Retrieval: A Comparative Approach on Performance of Title and Statutes Descriptive Text. 52-57 - R. Ramesh Kannan, R. Rajalakshmi:

DLRG@AILA 2019: Context - Aware Legal Assistance System. 58-63 - Jiaming Gao, Hui Ning, Huilin Sun, Ruifeng Liu, Zhongyuan Han, Leilei Kong, Haoliang Qi:

FIRE2019@AILA: Legal Retrieval Based on Information Retrieval Model. 64-69
Author profiling and deception detection in Arabic (APDA)
- Francisco M. Rangel Pardo, Paolo Rosso, Anis Charfi, Wajdi Zaghouani, Bilal Ghanem, Javier Sánchez-Junquera:

Overview of the Track on Author Profiling and Deception Detection in Arabic. 70-83 - Chiyu Zhang, Muhammad Abdul-Mageed:

BERT-Based Arabic Social Media Author Profiling. 84-91 - Hamada A. Nayel:

NAYEL@APDA: Machine Learning Approach for Author Profiling and Deception Detection in Arabic Texts. 92-99 - Haritha Ananthakrishnan, Akshaya Ranganathan, D. Thenmozhi, Chandrabose Aravindan:

Arabic Author Profiling and Deception Detection using Traditional Learning Methodologies with Word Embedding. 100-104 - Yutong Sun, Hui Ning, Kaisheng Chen, Leilei Kong, Yunpeng Yang, Jiexi Wang, Haoliang Qi:

Author Profiling in Arabic Tweets: An Approach based on Multi-Classification with Word and Character Features. 105-109 - Jorge Cabrejas, Jose Vicente Martí, Antonio Pajares, Víctor Sanchis:

Deception Detection in Arabic Texts Using N-grams Text Mining. 110-114 - Al Hafiz Akbar Maulana Siagian, Masayoshi Aritsugi:

DBMS-KU Approach for Author Profiling and Deception Detection in Arabic. 115-121 - F. Javier Fernández-Bravo Peñuela:

Deception Detection in Arabic Tweets and News. 122-126 - Isabella Karabasz, Paolo Cellini, Gonzalo Galiana:

Predicting Author Characteristics of Arabic Tweets through Author Profiling. 127-135 - Sharmila Devi V, Kannimuthu S, Ravikumar G, Anand Kumar M:

KCE DALab-APDA@FIRE2019: Author Profiling and Deception Detection in Arabic using Weighted Embedding. 136-143 - Khaled Alrifai, Ghaida Rebdawi, Nada Ghneim:

Arabic Tweeps Traits Prediction AT2P. 144-151 - Francisco Eros Blázquez del Rio, Manuel Conde Rodríguez, Jose M. Escalante:

Detection of deceptions in Twitter and News Headlines written in Arabic. 152-159 - Chanchal Suman, Purushottam Kumar

, Sriparna Saha, Pushpak Bhattacharyya:
Gender Age and Dialect Recognition using Tweets in a Deep Learning Framework - Notebook for FIRE 2019. 160-166
Hate Speech and Offensive Content Identification in Indo-European Languages (HASOC)
- Sandip Modha, Thomas Mandl, Prasenjit Majumder, Daksh Patel:

Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages. 167-190 - Bin Wang, Yunxia Ding, Shengyan Liu, Xiaobing Zhou:

YNU_Wb at HASOC 2019: Ordered Neurons LSTM with Attention for Identifying Hate Speech and Offensive Language. 191-198 - Tharindu Ranasinghe, Marcos Zampieri, Hansi Hettiarachchi:

BRUMS at HASOC 2019: Deep Learning Models for Multilingual Hate Speech and Offensive Language Identification. 199-207 - Shubhanshu Mishra, Sudhanshu Mishra:

3Idiots at HASOC 2019: Fine-tuning Transformer Neural Networks for Hate Speech Identification in Indo-European Languages. 208-213 - Victor Nina-Alcocer:

Vito at HASOC 2019: Detecting Hate Speech and Offensive Content through Ensembles. 214-220 - Zhibin Lu, Jian-Yun Nie:

RALIGRAPH at HASOC 2019: VGCN-BERT: Augmenting BERT with Graph Embedding for Offensive Language Detection. 221-228 - Arup Baruah

, Ferdous Ahmed Barbhuiya, Kuntal Dey:
IIITG-ADBU at HASOC 2019: Automated Hate Speech and Offensive Content Detection in English and Code-Mixed Hindi Text. 229-236 - Md. Abul Bashar, Richi Nayak:

QutNocturnal@HASOC'19: CNN for Hate Speech and Offensive Content Identification in Hindi Language. 237-245 - Punyajoy Saha, Binny Mathew, Pawan Goyal, Animesh Mukherjee:

HateMonitors: Language Agnostic Abuse Detection in Social Media. 246-253 - Aiqi Jiang:

QMUL-NLP at HASOC 2019: Offensive Content Detection and Classification in Social Media. 254-262 - Dana Ruiter, Md. Ataur Rahman

, Dietrich Klakow:
LSV-UdS at HASOC 2019: The Problem of Defining Hate. 263-270 - Vandan Mujadia, Pruthwik Mishra, Dipti Misra Sharma:

IIIT-Hyderabad at HASOC 2019: Hate Speech Detection. 271-278 - Jean-Christophe Mensonides, Pierre-Antoine Jean, Andon Tchechmedjiev, Sébastien Harispe:

IMT Mines Ales at HASOC 2019: Automatic Hate Speech Detection. 279-284 - Ritesh Kumar, Atul Kr. Ojha:

KMI-Panlingua at HASOC 2019: SVM vs BERT for Hate Speech and Offensive Content Detection. 285-292 - Pedro Alonso, Rajkumar Saini, György Kovács:

TheNorth at HASOC 2019: Hate Speech Detection in Social Media Data. 293-299 - Marco Casavantes, Roberto López-Santillán, Luis Carlos González-Gurrola, Manuel Montes-y-Gómez:

UACh-INAOE at HASOC 2019: Detecting Aggressive Tweets by Incorporating Authors' Traits as Descriptors. 300-307 - Anita Saroj, Rajesh Kumar Mundotiya, Sukomal Pal:

IRLab@IITBHU at HASOC 2019: Traditional Machine Learning for Hate Speech and Offensive Content Identification. 308-314 - Apurva Parikh, Harsh Desai, Abhimanyu Singh Bisht:

DA Master at HASOC 2019: Identification of Hate Speech using Machine Learning and Deep Learning approaches for social media post. 315-319 - Kaushik Amar Das, Ferdous Ahmed Barbhuiya:

Team FalsePostive at HASOC 2019: Transfer-Learning for Detection and Classification of Hate Speech. 320-327 - Kirti Kumari, Jyoti Prakash Singh:

AI ML NIT Patna at HASOC 2019: Deep Learning Approach for Identification of Abusive Content. 328-335 - Hamada A. Nayel, H. L. Shashirekha:

DEEP at HASOC2019: A Machine Learning Framework for Hate Speech and Offensive Language Detection. 336-343 - Akanksha Mishra, Sukomal Pal:

IIT Varanasi at HASOC 2019: Hate Speech and Offensive Content Identification in Indo-European Languages. 344-351 - Urmi Saha, Abhijeet Dubey, Pushpak Bhattacharyya:

IIT Bombay at HASOC 2019: Supervised Hate Speech and Offensive Content Detection in Indo-European Languages. 352-358 - Baidya Nath Saha, Apurbalal Senapati:

CIT Kokrajhar Team: LSTM based Deep RNN Architecture for Hate Speech and Offensive Content (HASOC) Identification in Indo-European Languages. 359-365 - Sreelakshmi K, Premjith B, Soman K. P:

Amrita CEN at HASOC 2019: Hate Speech Detection in Roman and Devanagiri Scripted Text. 366-369 - R. Rajalakshmi, B. Yashwant Reddy:

DLRG@HASOC 2019: An Enhanced Ensemble Classifier for Hate and Offensive Content Identification. 370-379
Irony Detection in Arabic Tweets (IDAT)
- Bilal Ghanem, Jihen Karoui, Farah Benamara, Véronique Moriceau, Paolo Rosso:

IDAT@FIRE2019: Overview of the Track on Irony Detection in Arabic Tweets. 380-390 - Chiyu Zhang, Muhammad Abdul-Mageed:

Multi-Task Bidirectional Transformer Representations for Irony Detection. 391-400 - Hamada A. Nayel, Walaa Medhat, Metwally Rashad:

BENHA@IDAT: Improving Irony Detection in Arabic Tweets using Ensemble Approach. 401-408 - Leila Moudjari, Karima Akli-Astouati:

An Embedding-based Approach for Irony Detection in Arabic tweets. 409-415 - Tharindu Ranasinghe, Hadeel Saadany, Alistair Plum, Salim Mandhari, Emad Mohamed, Constantin Orasan, Ruslan Mitkov:

RGCL at IDAT: Deep Learning models for Irony Detection in Arabic Language. 416-425 - Nikita Kanwar, Rajesh Kumar Mundotiya, Megha Agarwal, Chandradeep Singh:

Emotion based voted classifier for Arabic irony tweet identification. 426-432 - Muhammad Khalifa, Noura Hussein:

Ensemble Learning for Irony Detection in Arabic Tweets. 433-438 - S. Kayalvizhi, D. Thenmozhi, B. Senthil Kumar, Chandrabose Aravindan:

SSN_NLP@IDAT-FIRE-2019: Irony Detection in Arabic Tweets using Deep Learning and Features-based Approaches. 439-444 - Ali Allaith, Muhammad Shahbaz, Mohammed Alkoli:

Neural Network Approach for Irony Detection from Arabic Text on Social Media. 445-450
Classification of Insincere Questions (CIQ)
- Vandan Mujadia, Pruthwik Mishra, Dipti Misra Sharma:

Classification of Insincere Questions with ML and Neural Approaches. 451-455 - Chandni M, Priyanga V. T, Premjith B, Soman K. P:

Amrita CEN CIQ: Classification of Insincere Questions. 456-462 - Akshaya Ranganathan, Haritha Ananthakrishnan, D. Thenmozhi, Chandrabose Aravindan:

Classification of Insincere Questions using SGD Optimization and SVM Classifiers. 463-467 - Akanksha Mishra, Sukomal Pal:

IIT-BHU at CIQ 2019: Classification of Insincere Questions. 468-472 - Sourya Dipta Das, Ayan Basak, Soumil Mandal:

Fine Grained Insincere Questions Classification using Ensembles of Bidirectional LSTM-GRU Model. 473-481 - Zhongyuan Han, Jiaming Gao, Huilin Sun, Ruifeng Liu, Chengzhe Huang, Leilei Kong, Haoliang Qi:

An Ensemble Learning-based Model for Classification of Insincere Questions. 482-488

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














