


default search action
FIRE 2023: Panjim / Goa, India - Working Notes
- Kripabandhu Ghosh, Thomas Mandl, Prasenjit Majumder, Mandar Mitra:

Working Notes of FIRE 2023 - Forum for Information Retrieval Evaluation (FIRE-WN 2023), Goa, India, December 15-18, 2023. CEUR Workshop Proceedings 3681, CEUR-WS.org 2024 - Preface.

Artificial Intelligence on Social Media (AISoMe)
- Soham Poddar, Moumita Basu, Kripabandhu Ghosh, Saptarshi Ghosh:

Overview of the FIRE 2023 Track: Artificial Intelligence on Social Media (AISoMe). 1-5 - Aritra Mandal:

Enhancing Multilabel Classification of Anti-Vaccine Tweets with the COVID-Twitter-BERT. 6-11 - Kaustav Das:

Vaccine Vision: A deep learning approach towards identifying societal concerns regarding vaccines. 12-17 - Aniket Deroy, Subhankar Maity:

Multi-Label Classification of COVID-Tweets Using Large Language Models. 18-23 - Swastik Anupam:

Tweet Classifier: Advancements in Multi-Label Analysis. 24-29 - Sumit Das, Palvika Bansal, Vikas Rai, Shalini Kumari:

Multi-label Classification of Covid-19 Vaccine Tweet. 30-43 - Shankha S. Das, Sohan Choudhury, Priyam Saha, Dipankar Das:

VaxTweetClassifier: BERT for Dealing with Vaccination Tweets. 44-51 - Aditya O. Patil, Raj Awate, Shivakumar Ranade, Sheetal Sonawane:

VaxVerdict: a RoBERTa Based Multilabel Tweet Classifier. 52-58 - Rajat Singh, Shivangi Bithel, Samidha Verma, Prachi:

VaxiBERT: A BERT-Based Classifier for Vaccine Tweets with Multi-Label Annotations. 59-66 - Shriram M. S:

Deciphering Vaccine Sentiments: Transformer Models in Social Media Analysis. 67-74 - Ranjit Patro, Asutosh Mishra:

BERT-Powered Multi-label Classifier: Analyzing Public COVID Vaccination Discourse. 75-81 - Lakshmi Gopal:

Analysing Crowd-Sourced Vaccine Data Using Machine Learning: Uncovering Concerns and Insights. 82-90 - Somsubhra De, Shaurya Vats:

Decoding Concerns: Multi-label Classification of Vaccine Sentiments in Social Media. 99-111 - Baivab Chakraborty, Subhajit Srimani, Souvit Biswas:

TweetClass: COVID-19 Vaccine Tweet Classification with scikit-learn. 112-117
Cross-lingual Information Retrieval for African Languages (CIRAL)
- Mofetoluwa Adeyemi, Akintunde Oladipo, Xinyu Crystina Zhang, David Alfonso-Hermelo, Mehdi Rezagholizadeh, Boxing Chen, Jimmy Lin:

Overview of the CIRAL Track at FIRE 2023: Cross-lingual Information Retrieval for African Languages. 118-136 - Eugene Yang, Dawn J. Lawrie, Paul McNamee, James Mayfield:

Extending Translate-Train for ColBERT-X to African Language CLIR. 137-146
Uncovering Truth in Social Media through Claim Detection and Identification of Claim Spans (CLAIMSCAN)
- Megha Sundriyal, Md. Shad Akhtar, Tanmoy Chakraborty:

Overview of the CLAIMSCAN-2023: Uncovering Truth in Social Media through Claim Detection and Identification of Claim Spans. 147-158 - Albert Pritzkau, Julia Waldmüller, Olivier Blanc, Michaela Geierhos, Ulrich Schade:

Current language models' poor performance on pragmatic aspects of natural language. 159-169 - Michael Sullivan, Navid Madani, Sougata Saha, Rohini K. Srihari:

Positional Transformers for Claim Span Identification. 170-178
Word-level Language Identification in Code-mixed Tulu Texts (CoLI-Tunglish)
- Asha Hegde, Fazlourrahman Balouchzahi, Sharal Coelho, H. L. Shashirekha, Hamada A. Nayel, Sabur Butt:

Overview of CoLI-Tunglish: Word-level Language Identification in Code-mixed Tulu Text at FIRE 2023. 179-190 - Yves Bestgen:

Using Character Ngrams for Word-Level Language Identification in Trilingual Code-Mixed Data (and Even More). 191-197 - Poorvi Shetty:

Word-Level Language Identification of Code-Mixed Tulu-English Data. 198-204 - Ahmed M. Fetouh, Hamada Nayel:

BFCAI at CoLI-Tunglish@FIRE 2023: Machine Learning Based Model for Word-level Language Identification in Code-mixed Tulu Texts. 205-212 - Sushma N, Asha Hegde, Hosahalli Lakshmaiah Shashirekha:

Word-level Language Identification in Code-mixed Tulu Texts. 213-222 - Supriya Chanda, Anshika Mishra, Sukomal Pal:

Advancing Language Identification in Code-Mixed Tulu Texts: Harnessing Deep Learning Techniques. 223-230
Scarcasm Identification of Dravidian Languages (Malayalam and Tamil) in DravidianCodeMix 2023 (DravidianCodeMix)
- Bharathi Raja Chakravarthi, Sripriya N, Bharathi B, Nandhini K, Subalalitha Chinnaudayar Navaneethakrishnan, Thenmozhi Durairaj, Rahul Ponnusamy, Prasanna Kumar Kumaresan, Kishore Kumar Ponnusamy, Charmathi Rajkumar:

Overview of Sarcasm Identification of Dravidian Languages in DravidianCodeMix@FIRE-2023. 231-239 - Poorvi Shetty:

Sarcasm Identification in Dravidian Languages Tamil and Malayalam. 240-248 - Anik Basu Bhaumik, Mithun Das:

Sarcasm Detection in Dravidian Code-Mixed Text Using Transformer-Based Models. 249-258 - Dhanya Krishnan, Krithika Dharanikota, B. Bharathi:

Cross-Linguistic Sarcasm Detection in Tamil and Malayalam: A Multilingual Approach. 259-269 - Anusha M. D, Parameshwar R. Hegde:

Unmasking Sarcasm: Sarcastic Language Detection with BiLSTMs. 270-277 - Ramya Sivakumar, Jerin Mahibha C, B. Monica Jenefer:

Identifying the Type of Sarcasm in Dravidian Languages using Deep-Learning Models. 278-286 - Navya N, Vanitha V, Asha Hegde, H. L. Shashirekha:

Learning Models with Text Augmentation for Sarcasm Detection in Malayalam and Tamil Code-mixed Texts. 287-298 - Shanmitha Thirumoorthy, Manavh N. R, Durairaj Thenmozhi, Ratnavel Rajalakshmi:

A Few Shot Learning to Detect Sarcasm in Tamil and Malayalam Code Mixed Data. 299-305 - Madhumitha M, Kunguma Akshatra M, Tejashri J, Jerin Mahibha C, Durairaj Thenmozhi:

Sarcasm Detection in Dravidian Languages using Transformer Models. 306-318 - Prabhu Ram. N, Meera Devi. T, Kanisha. V, Meharnath. S, Manoji. B:

Sarcasm Identification in Codemix Dravidian Languages. 319-326 - V. Indirakanth, Dharunkumar Udayakumar, Thenmozhi Durairaj, B. Bharathi:

Sarcasm Identification Of Dravidian Languages (Malayalam and Tamil). 327-335 - Supriya Chanda, Anshika Mishra, Sukomal Pal:

Sarcasm Detection in Tamil and Malayalam Dravidian Code-Mixed Text. 336-343
Hate Speech and Offensive Content Identification in English and Indo-Aryan Languages (HASOC)
- Shrey Satapara, Hiren Madhu, Tharindu Ranasinghe, Alphaeus Eric Dmonte, Marcos Zampieri, Pavan Pandya, Nisarg Shah, Sandip Modha, Prasenjit Majumder, Thomas Mandl:

Overview of the HASOC Subtrack at FIRE 2023: Hate-Speech Identification in Sinhala and Gujarati. 344-350 - Hiren Madhu, Shrey Satapara, Pavan Pandya, Nisarg Shah, Thomas Mandl, Sandip Modha:

Overview of the HASOC Subtrack at FIRE 2023: Identification of Conversational Hate-Speech. 351-359 - Sarah Masud, Mohammad Aflah Khan, Md. Shad Akhtar, Tanmoy Chakraborty:

Overview of the HASOC Subtrack at FIRE 2023: Identification of Tokens Contributing to Explicit Hate in English by Span Detection. 360-367 - Koyel Ghosh, Apurbalal Senapati, Aditya Shankar Pal:

Annihilate Hates (Task 4 HASOC 2023): Hate Speech Detection in Assamese Bengali and Bodo languages. 368-382 - Olumide Ebenezer Ojo, Olaronke Oluwayemisi Adebanji, Hiram Calvo, Alexander F. Gelbukh, Anna Feldman, Grigori Sidorov:

Hate and Offensive Content Identification in Indo-Aryan Languages using Transformer-based Models. 383-392 - Niyar R. Barman, Krish Sharma, Yashraj Poddar, Advaitha Vetagiri, Partha Pakray:

Addressing Hate Speech: ATLANTIS for Efficient Hate Span Detection. 393-402 - Mohammadmostafa Rostamkhani, Sauleh Eetemadi:

Detecting Hate Speech and Offensive Content in English and Indo-Aryan Texts. 403-410 - Yves Bestgen:

Using Only Character Ngrams for Hate Speech and Offensive Content Identification in Five Low-Ressource Languages. 411-417 - Avigail Stekel, Avital Prives, Yaakov HaCohen-Kerner:

Detecting Offensive Language in Bengali Bodo and Assamese using Word Unigrams Char N-grams Classical Machine Learning and Deep Learning Methods. 418-426 - Ananya Joshi, Raviraj Joshi:

Harnessing Pre-Trained Sentence Transformers for Offensive Language Detection in Indian Languages. 427-434 - G. Gnana Sai, Aswath Venkatesh, Kishore N, Olirva M, Balaji V. A, Prabavathy Balasundaram:

Enhancing Hate Speech Detection in Sinhala and Gujarati: Leveraging BERT Models and Linguistic Constraints. 435-444 - Abhinav Reddy Gutha, Nidamanuri Sai Adarsh, Ananya Alekar, Dinesh Reddy:

Multilingual Hate Speech and Offensive Language Detection of Low Resource Languages. 445-458 - Ch Muhammad Awais, Jayveersinh Raj:

Breaking Barriers: Multilingual Toxicity Analysis for Hate Speech and Offensive Language in Low-Resource Indo-Aryan Languages. 459-473 - Gyandeep Kalita, Eisha Halder, Chetna Taparia, Advaitha Vetagiri, Partha Pakray:

Examining Hate Speech Detection Across Multiple Indo-Aryan Languages in Tasks 1 & 4. 474-485 - Supriya Chanda, Abhishek Dhaka, Sukomal Pal:

Crossing Borders: Multilingual Hate Speech Detection. 486-500 - Muhammad Deedahwar Mazhar Qureshi, Madhuri Sawant, Muhammad Atif Qureshi, Wael Rashwan, Arjumand Younus, Simon Caton:

Hate speech classification for Sinhalese and Gujarati. 501-515 - Sougata Saha, Michael Sullivan, Rohini K. Srihari:

Hate Speech Detection in Low Resource Indo-Aryan Languages. 516-520 - M. Krithik Sathya, K. H. Gopalakrishnan, Manickam PA, Prabavathy Balasundaram:

Sinhala and Gujarati Hate Speech Detection. 521-531 - Jhuma Kabir Mim, Mourad Oussalah, Akash Singhal:

Cross-Linguistic Offensive Language Detection: BERT-Based Analysis of Bengali Assamese & Bodo Conversational Hateful Content from Social Media. 532-543 - Surya Agustian, Zaky Idhafi, Agit Fadillah Rihardi:

Improving Detection of Hate Speech, Offensive Language and Profanity in Short Texts with SVM Classifier. 544-552 - Chandan Senapati, Utpal Roy:

Bengali Hate Speech Detection Using Deep Learning Technique. 553-562 - Prajnashree M, Rachana K, Asha Hegde, Kavya Girish, Sharal Coelho, H. L. Shashirekha:

Taming Toxicity: Learning Models for Hate Speech and Offensive Language Detection in Social Media Text. 563-573 - Nikhil Narayan, Mrutyunjay Biswal, Pramod Goyal, Abhranta Panigrahi:

Hate Speech and Offensive Content Detection in Indo-Aryan Languages: A Battle of LSTM and Transformers. 574-587 - Md Saroar Jahan, Fadi Hassan, Walid Aransa, Abdessalam Bouchekif:

Multilingual Hate Speech Detection Using Ensemble of Transformer Models. 588-597
Information Retrieval in Software Engineering (IRSE)
- Srijoni Majumdar, Soumen Paul, Bhargav Dave, Debjyoti Paul, Ayan Bandyopadhyay, Samiran Chattopadhyay, Partha Pratim Das, Paul D. Clough, Prasenjit Majumder:

Generative AI for Software Metadata: Overview of the Information Retrieval in Software Engineering Track at FIRE 2023. 598-604 - Hanna Abi Akl:

A ML-LLM pairing for better code comment classification. 605-614 - Seetharam Killivalavan, Durairaj Thenmozhi:

Software Metadata Classification based on Generative Artificial Intelligence. 615-623 - Samah Syed, Angel Deborah S:

Leveraging Generative AI: Improving Software Metadata Classification with Generated Code-Comment Pairs. 624-632 - Trisha Datta:

Source Code Comment Classification using machine learning algorithms. 633-641 - Rohith Arumugam S, Angel Deborah S:

Enhancing Binary Code Comment Quality Classification: Integrating Generative AI for Improved Accuracy. 642-651 - Lisa Sarkar:

Binary Classification of Source Code Comments using Machine Learning Models. 652-660 - Tripti Kumari, Chakali Sai Charan, Ayan Das:

A study of the impact of generative AI-based data augmentation on software metadata classification. 661-669 - Jagrat T. Patel:

Leveraging Language Models for Code Comment Classification. 670-678 - Jaivin Barot:

Enhancing Code Comment Classification Using Language Models. 679-688 - Aritra Mitra:

Assessing the Utility of C Comments with SVM and Naïve Bayes Classifier. 689-695 - Raj Jitendra Shah:

Source Code Comment Classification using Naive Bayes and Support Vector Machine. 696-703 - Vishesh Agarwal:

On the Impact of Synthetic Data on Code Comment Usefulness Prediction. 704-710 - Priyam Dalmia:

Exploring LLM-based Data Augmentation Techniques for Code Comment Quality Classification. 711-717 - Paheli Bhattacharya, Manojit Chakraborty, Kartheek N. S. N. Palepu, Vikas Pandey, Ishan Dindorkar, Rakesh Rajpurohit, Rishabh Gupta:

Exploring Large Language Models for Code Explanation. 718-723
Indian Language Summarization (ILSUM)
- Shrey Satapara, Parth Mehta, Sandip Modha, Debasis Ganguly:

Key Takeaways from the Second Shared Task on Indian Language Summarization (ILSUM 2023). 724-733 - Aniket Deroy, Subhankar Maity, Saptarshi Ghosh:

Prompted Zero-Shot Multi-label Classification of Factual Incorrectness in Machine-Generated Summaries. 734-746 - Saliq Gowhar, Bhavya Sharma, Ashutosh K. Gupta, Anand Kumar Madasamy:

Advancing Human-Like Summarization: Approaches to Text Summarization. 747-754 - Saumay Gupta, Sukomal Pal:

Named Entity-Aware Abstractive Text Summarization for Hindi Language. 755-765 - V. Ilanchezhiyan, R. Darshan, E. M. Milin Dhitshithaa, B. Bharathi:

Text Summarization for Indian Languages: Finetuned Transformer Model Application. 766-774
Machine Translation for Indian Languages (MTIL)
- Surupendu Gangopadhyay:

Overview of MTIL Track at FIRE 2023: Machine Translation for Indian Languages. 775-782 - Rakesh Chandra Balabantaray:

Hindi-Odia Machine Translation System. 783-789 - Amulya Ratna Dash:

Fine tuning based Domain Adaptation for Machine Translation of Low Resource Indic Languages. 790-795 - Mukund K. Roy:

Bidirectional Hindi-Punjabi Machine Translation. 796-801

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














