


default search action
GPTP 2019: Michigan State University, East Lansing, MI, USA
- Wolfgang Banzhaf, Erik D. Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel:

Genetic Programming Theory and Practice XVII [GPTP 2019, Michigan State University, East Lansing, Michigan, USA, May 16-19, 2019]. Springer 2020, ISBN 978-3-030-39957-3 - Austin J. Ferguson, Jose Guadalupe Hernandez, Daniel Junghans, Alexander Lalejini

, Emily L. Dolson, Charles Ofria:
Characterizing the Effects of Random Subsampling on Lexicase Selection. 1-23 - Francisco Fernández de Vega, Gustavo Olague, Francisco Chávez de la O

, Daniel Lanza, Wolfgang Banzhaf, Erik D. Goodman:
It Is Time for New Perspectives on How to Fight Bloat in GP. 25-38 - Ivo Gonçalves

, Marta Seca, Mauro Castelli
:
Explorations of the Semantic Learning Machine Neuroevolution Algorithm: Dynamic Training Data Use, Ensemble Construction Methods, and Deep Learning Perspectives. 39-62 - Ting Hu:

Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? 63-77 - Lukas Kammerer, Gabriel Kronberger, Bogdan Burlacu, Stephan M. Winkler, Michael Kommenda, Michael Affenzeller:

Symbolic Regression by Exhaustive Search: Reducing the Search Space Using Syntactical Constraints and Efficient Semantic Structure Deduplication. 79-99 - Stephen Kelly, Wolfgang Banzhaf:

Temporal Memory Sharing in Visual Reinforcement Learning. 101-119 - Douglas Kirkpatrick, Arend Hintze:

The Evolution of Representations in Genetic Programming Trees. 121-143 - Arthur K. Kordon, Theresa Kotanchek, Mark E. Kotanchek:

How Competitive Is Genetic Programming in Business Data Science Applications? 145-163 - Anil Kumar Saini, Lee Spector:

Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming. 165-180 - Joel Lehman:

Evolutionary Computation and AI Safety - Research Problems Impeding Routine and Safe Real-World Application of Evolution. 181-200 - Miguel Nicolau, James McDermott:

Genetic Programming Symbolic Regression: What Is the Prior on the Prediction? 201-225 - Gustavo Olague, Mariana Chan-Ley:

Hands-on Artificial Evolution Through Brain Programming. 227-253 - Edward R. Pantridge, Thomas Helmuth, Lee Spector:

Comparison of Linear Genome Representations for Software Synthesis. 255-274 - Hormoz Shahrzad, Babak Hodjat, Camille Dollé, Andrei Denissov, Simon Lau, Donn Goodhew, Justin Dyer, Risto Miikkulainen:

Enhanced Optimization with Composite Objectives and Novelty Pulsation. 275-293 - Moshe Sipper, Jason H. Moore, Ryan J. Urbanowicz

:
New Pathways in Coevolutionary Computation. 295-305 - Andrew N. Sloss, Steven Gustafson:

2019 Evolutionary Algorithms Review. 307-344 - Robert J. Smith

, Malcolm I. Heywood:
Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model. 345-366 - David Robert White, Benjamin Fowler, Wolfgang Banzhaf, Earl T. Barr

:
Modelling Genetic Programming as a Simple Sampling Algorithm. 367-381 - Yuan Yuan, Wolfgang Banzhaf:

An Evolutionary System for Better Automatic Software Repair. 383-406

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














