


default search action
4th L4DC 2022: Stanford University, CA, USA
- Roya Firoozi, Negar Mehr, Esen Yel, Rika Antonova, Jeannette Bohg, Mac Schwager, Mykel J. Kochenderfer:

Learning for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford University, Stanford, CA, USA. Proceedings of Machine Learning Research 168, PMLR 2022 - Preface. 1-7

- Daniel Jung:

Automated Design of Grey-Box Recurrent Neural Networks For Fault Diagnosis using Structural Models and Causal Information. 8-20 - Ting-Han Fan, Xian Yeow Lee, Yubo Wang:

PowerGym: A Reinforcement Learning Environment for Volt-Var Control in Power Distribution Systems. 21-33 - Abhishek Cauligi, Ankush Chakrabarty, Stefano Di Cairano, Rien Quirynen:

PRISM: Recurrent Neural Networks and Presolve Methods for Fast Mixed-integer Optimal Control. 34-46 - Anirudh Vemula, Wen Sun, Maxim Likhachev, J. Andrew Bagnell:

On the Effectiveness of Iterative Learning Control. 47-58 - Steven D. Morad

, Stephan Liwicki, Ryan Kortvelesy, Roberto Mecca, Amanda Prorok:
Modeling Partially Observable Systems using Graph-Based Memory and Topological Priors. 59-73 - Andrea Sassella, Valentina Breschi, Simone Formentin:

Noise Handling in Data-driven Predictive Control: A Strategy Based on Dynamic Mode Decomposition. 74-85 - Olle Kjellqvist, Anders Rantzer:

Learning-Enabled Robust Control with Noisy Measurements. 86-96 - Haitong Ma, Changliu Liu, Shengbo Eben Li, Sifa Zheng, Jianyu Chen:

Joint Synthesis of Safety Certificate and Safe Control Policy Using Constrained Reinforcement Learning. 97-109 - Samarth Sinha, Jiaming Song, Animesh Garg, Stefano Ermon:

Experience Replay with Likelihood-free Importance Weights. 110-123 - Baris Kayalibay, Atanas Mirchev, Patrick van der Smagt, Justin Bayer:

Tracking and Planning with Spatial World Models. 124-137 - Nicola Bastianello

, Andrea Simonetto, Emiliano Dall'Anese:
OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression. 138-152 - Simon Muntwiler, Kim Peter Wabersich, Melanie N. Zeilinger:

Learning-based Moving Horizon Estimation through Differentiable Convex Optimization Layers. 153-165 - Yuda Song

, Ye Yuan, Wen Sun, Kris Kitani:
Online No-regret Model-Based Meta RL for Personalized Navigation. 166-179 - Stephen Tu, Alexander Robey, Tingnan Zhang, Nikolai Matni:

On the Sample Complexity of Stability Constrained Imitation Learning. 180-191 - Thinh T. Doan:

Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for Solving Nonconvex Min-Max Problems. 192-206 - Brendon G. Anderson, Somayeh Sojoudi:

Certified Robustness via Locally Biased Randomized Smoothing. 207-220 - Henk van Waarde, Rodolphe Sepulchre:

Training Lipschitz Continuous Operators Using Reproducing Kernels. 221-233 - Liliaokeawawa Cothren, Gianluca Bianchin, Emiliano Dall'Anese:

Data-Enabled Gradient Flow as Feedback Controller: Regulation of Linear Dynamical Systems to Minimizers of Unknown Functions. 234-247 - Cameron R. Wolfe, Anastasios Kyrillidis:

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery. 248-262 - Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, Ufuk Topcu:

Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling. 263-277 - Siliang Zeng, Tianyi Chen, Alfredo García

, Mingyi Hong:
Learning to Coordinate in Multi-Agent Systems: A Coordinated Actor-Critic Algorithm and Finite-Time Guarantees. 278-290 - Samuel Pfrommer, Tanmay Gautam, Alec Zhou, Somayeh Sojoudi:

Safe Reinforcement Learning with Chance-constrained Model Predictive Control. 291-303 - Yansong Li, Shuo Han:

Accelerating Model-Free Policy Optimization Using Model-Based Gradient: A Composite Optimization Perspective. 304-315 - Miguel Jaques, Martin Asenov, Michael Burke

, Timothy M. Hospedales:
Vision-based System Identification and 3D Keypoint Discovery using Dynamics Constraints. 316-329 - Yujie Yang, Jianyu Chen, Shengbo Li:

Learning POMDP Models with Similarity Space Regularization: a Linear Gaussian Case Study. 330-341 - Yuanhanqing Huang, Jianghai Hu:

Distributed Stochastic Nash Equilibrium Learning in Locally Coupled Network Games with Unknown Parameters. 342-354 - Samuel Low, Mykel J. Kochenderfer:

Optimal Pointing Sequences in Spacecraft Formation Flying Using Online Planning with Resource Constraints. 355-365 - Krista Longi, Jakob Lindinger, Olaf Dünnbier, Melih Kandemir, Arto Klami, Barbara Rakitsch:

Traversing Time with Multi-Resolution Gaussian Process State-Space Models. 366-377 - Yifeng Jiang, Jiazheng Sun, C. Karen Liu:

Data-Augmented Contact Model for Rigid Body Simulation. 378-390 - Jingrong Wang, Ben Liang:

Gradient and Projection Free Distributed Online Min-Max Resource Optimization. 391-403 - Gautam Goel, Babak Hassibi:

Online Estimation and Control with Optimal Pathlength Regret. 404-414 - Ce Xu Zheng, Adrià Colomé, Luis Sentis, Carme Torras:

Mixtures of Controlled Gaussian Processes for Dynamical Modeling of Deformable Objects. 415-426 - Han Wang, James Anderson:

Learning Linear Models Using Distributed Iterative Hessian Sketching. 427-440 - Ali Salamati, Majid Zamani:

Data-Driven Safety Verification of Stochastic Systems via Barrier Certificates: A Wait-and-Judge Approach. 441-452 - Franck Djeumou, Ufuk Topcu:

Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information. 453-466 - Feiran Zhao, Xingchen Li, Keyou You:

Data-driven Control of Unknown Linear Systems via Quantized Feedback. 467-479 - Rel Guzman Apaza, Rafael Oliveira, Fabio Ramos:

Adaptive Model Predictive Control by Learning Classifiers. 480-491 - Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, Vikash Kumar:

MyoSuite: A Contact-rich Simulation Suite for Musculoskeletal Motor Control. 492-507 - Weiming Zhi

, Tin Lai, Lionel Ott, Fabio Ramos:
Diffeomorphic Transforms for Generalised Imitation Learning. 508-519 - Santiago Sanchez-Escalonilla Plaza, Rodolfo Reyes-Báez, Bayu Jayawardhana:

Total Energy Shaping with Neural Interconnection and Damping Assignment - Passivity Based Control. 520-531 - Thomas T. C. K. Zhang, Stephen Tu, Nicholas M. Boffi, Jean-Jacques E. Slotine, Nikolai Matni:

Adversarially Robust Stability Certificates can be Sample-Efficient. 532-545 - Harish S. Bhat, Kevin Collins, Prachi Gupta, Christine M. Isborn:

Dynamic Learning of Correlation Potentials for a Time-Dependent Kohn-Sham System. 546-558 - Agustin Castellano, Hancheng Min, Enrique Mallada, Juan Andrés Bazerque:

Reinforcement Learning with Almost Sure Constraints. 559-570 - Luca Furieri, Clara Lucía Galimberti, Muhammad Zakwan, Giancarlo Ferrari-Trecate

:
Distributed Neural Network Control with Dependability Guarantees: a Compositional Port-Hamiltonian Approach. 571-583 - Saul Santos, Monica Ekal, Rodrigo M. M. Ventura:

Symplectic Momentum Neural Networks - Using Discrete Variational Mechanics as a prior in Deep Learning. 584-595 - Charis J. Stamouli, Anastasios Tsiamis, Manfred Morari, George J. Pappas:

Adaptive Stochastic MPC under Unknown Noise Distribution. 596-607 - Shagun Sodhani, Franziska Meier, Joelle Pineau, Amy Zhang:

Block Contextual MDPs for Continual Learning. 608-623 - Rameez Wajid, Asad Ullah Awan, Majid Zamani:

Formal Synthesis of Safety Controllers for Unknown Stochastic Control Systems using Gaussian Process Learning. 624-636 - Nima Eshraghi, Ben Liang:

Improving Dynamic Regret in Distributed Online Mirror Descent Using Primal and Dual Information. 637-649 - Benjamin Gravell, Iman Shames, Tyler H. Summers:

Robust Data-Driven Output Feedback Control via Bootstrapped Multiplicative Noise. 650-662 - Alan Yang, Jie Xiong, Maxim Raginsky, Elyse Rosenbaum:

Input-to-State Stable Neural Ordinary Differential Equations with Applications to Transient Modeling of Circuits. 663-675 - Rahul Singh

, Keuntaek Lee, Yongxin Chen:
Sample-based Distributional Policy Gradient. 676-688 - Zhe Du, Necmiye Ozay, Laura Balzano:

Clustering-based Mode Reduction for Markov Jump Systems. 689-701 - Marcos M. Vasconcelos:

Learning Distributed Channel Access Policies for Networked Estimation: Data-driven Optimization in the Mean-field Regime. 702-712 - Amir Khazraei, Henry D. Pfister, Miroslav Pajic:

Resiliency of Perception-Based Controllers Against Attacks. 713-725 - Andrea Martin, Luca Furieri, Florian Dörfler, John Lygeros, Giancarlo Ferrari-Trecate:

Safe Control with Minimal Regret. 726-738 - Tianhao Wei, Changliu Liu:

Safe Control with Neural Network Dynamic Models. 739-750 - Ningyuan Zhang, Wenliang Liu, Calin Belta:

Distributed Control using Reinforcement Learning with Temporal-Logic-Based Reward Shaping. 751-762 - Ameneh Nejati, Bingzhuo Zhong, Marco Caccamo, Majid Zamani:

Data-Driven Controller Synthesis of Unknown Nonlinear Polynomial Systems via Control Barrier Certificates. 763-776 - Zihao Zhou, Xingyi Yang, Ryan A. Rossi, Handong Zhao, Rose Yu:

Neural Point Process for Learning Spatiotemporal Event Dynamics. 777-789 - Adam J. Thorpe, Thomas Lew, Meeko Oishi, Marco Pavone:

Data-Driven Chance Constrained Control using Kernel Distribution Embeddings. 790-802 - Samuel Chevalier, Jochen Stiasny, Spyros Chatzivasileiadis:

Accelerating Dynamical System Simulations with Contracting and Physics-Projected Neural-Newton Solvers. 803-816 - Ross Drummond, Stephen Duncan, Matthew C. Turner, Patricia Pauli, Frank Allgöwer:

Bounding the Difference Between Model Predictive Control and Neural Networks. 817-829 - Milad Farsi, Yinan Li, Ye Yuan, Jun Liu:

A Piecewise Learning Framework for Control of Unknown Nonlinear Systems with Stability Guarantees. 830-843 - Zhigen Zhao, Simiao Zuo, Tuo Zhao, Ye Zhao:

Adversarially Regularized Policy Learning Guided by Trajectory Optimization. 844-857 - Horia Mania, Ali Jadbabaie, Devavrat Shah, Suvrit Sra:

Time Varying Regression with Hidden Linear Dynamics. 858-869 - Daniel Gurevich, Debdipta Goswami, Charles L. Fefferman, Clarence W. Rowley:

Optimal Control with Learning on the Fly: System with Unknown Drift. 870-880 - Lukas Brunke, Siqi Zhou, Angela P. Schoellig:

Barrier Bayesian Linear Regression: Online Learning of Control Barrier Conditions for Safety-Critical Control of Uncertain Systems. 881-892 - Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, Aravind Rajeswaran:

Can Foundation Models Perform Zero-Shot Task Specification For Robot Manipulation? 893-905 - Riccardo Valperga, Kevin Webster, Dmitry Turaev, Victoria Klein, Jeroen S. W. Lamb:

Learning Reversible Symplectic Dynamics. 906-916 - Saber Jafarpour, Matthew Abate, Alexander Davydov, Francesco Bullo, Samuel Coogan:

Robustness Certificates for Implicit Neural Networks: A Mixed Monotone Contractive Approach. 917-930 - Julian Viereck, Avadesh Meduri, Ludovic Righetti:

ValueNetQP: Learned One-step Optimal Control for Legged Locomotion. 931-942 - Yifei Zhang, Sourav Kumar Ukil, Ephraim Neimand, Serban Sabau, Myron E. Hohil:

Sample Complexity of the Robust LQG Regulator with Coprime Factors Uncertainty. 943-953 - Ryan Sander, Wilko Schwarting, Tim Seyde, Igor Gilitschenski, Sertac Karaman, Daniela Rus:

Neighborhood Mixup Experience Replay: Local Convex Interpolation for Improved Sample Efficiency in Continuous Control Tasks. 954-967 - Suhail Alsalehi, Erfan Aasi, Ron Weiss, Calin Belta:

Learning Spatio-Temporal Specifications for Dynamical Systems. 968-980 - Zhichao Li, Thai Duong, Nikolay Atanasov:

Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics. 981-993 - Muhammed O. Sayin, K. Alperen Cetiner:

On the Heterogeneity of Independent Learning Dynamics in Zero-sum Stochastic Games. 994-1005 - Jose Luis Vazquez Espinoza, Alexander Liniger, Wilko Schwarting, Daniela Rus, Luc Van Gool:

Deep Interactive Motion Prediction and Planning: Playing Games with Motion Prediction Models. 1006-1019 - Ryan K. Cosner, Maegan Tucker, Andrew J. Taylor, Kejun Li, Tamás G. Molnár, Wyatt Ubellacker, Anil Alan, Gábor Orosz, Yisong Yue, Aaron D. Ames:

Safety-Aware Preference-Based Learning for Safety-Critical Control. 1020-1033 - Junhyung Lyle Kim, Panos Toulis, Anastasios Kyrillidis:

Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum. 1034-1047 - Francesco De Lellis, Marco Coraggio, Giovanni Russo, Mirco Musolesi, Mario di Bernardo:

Control-Tutored Reinforcement Learning: Towards the Integration of Data-Driven and Model-Based Control. 1048-1059 - Ivan Dario Jimenez Rodriguez, Noel Csomay-Shanklin, Yisong Yue, Aaron D. Ames:

Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies. 1060-1072 - Raghu Arghal, Eric Lei, Shirin Saeedi Bidokhti:

Robust Graph Neural Networks via Probabilistic Lipschitz Constraints. 1073-1085 - Thomas Lew, Lucas Janson, Riccardo Bonalli, Marco Pavone:

A Simple and Efficient Sampling-based Algorithm for General Reachability Analysis. 1086-1099 - Felipe Galarza-Jimenez, Jorge Poveda, Emiliano Dall'Anese:

Sliding-Seeking Control: Model-Free Optimization with Safety Constraints. 1100-1111 - Bibit Bianchini, Mathew Halm, Nikolai Matni, Michael Posa:

Generalization Bounded Implicit Learning of Nearly Discontinuous Functions. 1112-1124 - Brett T. Lopez, Jean-Jacques E. Slotine:

Adaptive Variants of Optimal Feedback Policies. 1125-1136 - Wanxin Jin, Alp Aydinoglu, Mathew Halm, Michael Posa:

Learning Linear Complementarity Systems. 1137-1149 - Jan Brüdigam, Martin Schuck, Alexandre Capone, Stefan Sosnowski, Sandra Hirche:

Structure-Preserving Learning Using Gaussian Processes and Variational Integrators. 1150-1162 - Udaya Ghai, Xinyi Chen, Elad Hazan, Alexandre Megretski:

Robust Online Control with Model Misspecification. 1163-1175

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














