


default search action
ML4H@NeurIPS 2021: Virtual Event
- Subhrajit Roy, Stephen Pfohl, Emma Rocheteau, Girmaw Abebe Tadesse, Luis Oala, Fabian Falck, Yuyin Zhou, Liyue Shen, Ghada Zamzmi, Purity Mugambi, Ayah Zirikly, Matthew B. A. McDermott, Emily Alsentzer:

Machine Learning for Health, ML4H@NeurIPS 2021, 04 December 2021, Virtual Event. Proceedings of Machine Learning Research 158, PMLR 2021 - Subhrajit Roy, Stephen Pfohl, Girmaw Abebe Tadesse, Luis Oala, Fabian Falck, Yuyin Zhou, Liyue Shen, Ghada Zamzmi, Purity Mugambi, Ayah Zirikly, Matthew B. A. McDermott, Emily Alsentzer:

Machine Learning for Health (ML4H) 2021. 1-12 - Seongsu Bae, Daeyoung Kim, Jiho Kim, Edward Choi:

Question Answering for Complex Electronic Health Records Database using Unified Encoder-Decoder Architecture. 13-25 - Jonathan Rubin, Ramon Erkamp, Ragha Srinivasa Naidu, Anumod Odungatta Thodiyil, Alvin Chen:

Attention Distillation for Detection Transformers: Application to Real-Time Video Object Detection in Ultrasound. 26-37 - Esther Dietrich, Patrick Fuhlert

, Anne Ernst, Guido Sauter, Maximilian Lennartz, H. Siegfried Stiehl, Marina Zimmermann, Stefan Bonn:
Towards Explainable End-to-End Prostate Cancer Relapse Prediction from H&E Images Combining Self-Attention Multiple Instance Learning with a Recurrent Neural Network. 38-53 - Tuan Truong, Sadegh Mohammadi, Matthias Lenga:

How Transferable are Self-supervised Features in Medical Image Classification Tasks? 54-74 - Ilya Valmianski, Nave Frost, Navdeep Sood, Yang Wang, Baodong Liu, James J. Zhu, Sunil Karumuri, Ian M. Finn, Daniel S. Zisook:

SmartTriage: A system for personalized patient data capture, documentation generation, and decision support. 75-96 - Danliang Ho, Iain Bee Huat Tan, Mehul Motani:

Prognosticating Colorectal Cancer Recurrence using an Interpretable Deep Multi-view Network. 97-109 - Rhys Compton, Ilya Valmianski, Li Deng, Costa Huang, Namit Katariya, Xavier Amatriain, Anitha Kannan:

MEDCOD: A Medically-Accurate, Emotive, Diverse, and Controllable Dialog System. 110-129 - Neeraj Wagh, Jionghao Wei, Samarth Rawal, Brent M. Berry, Leland Barnard, Benjamin H. Brinkmann, Gregory A. Worrell, David T. Jones, Yogatheesan Varatharajah:

Domain-guided Self-supervision of EEG Data Improves Downstream Classification Performance and Generalizability. 130-142 - Milan Kuzmanovic, Tobias Hatt, Stefan Feuerriegel:

Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies. 143-155 - Bryan Gopal, Ryan W. Han, Gautham Raghupathi, Andrew Y. Ng, Geoffrey H. Tison, Pranav Rajpurkar:

3KG: Contrastive Learning of 12-Lead Electrocardiograms using Physiologically-Inspired Augmentations. 156-167 - Peiqi Wang, Ruizhi Liao, Daniel Moyer, Seth J. Berkowitz, Steven Horng, Polina Golland:

Image Classification with Consistent Supporting Evidence. 168-180 - Lorena Qendro, Alexander Campbell, Pietro Liò, Cecilia Mascolo:

Early Exit Ensembles for Uncertainty Quantification. 181-195 - Ajay Jaiswal, Liyan Tang, Meheli Ghosh, Justin F. Rousseau, Yifan Peng, Ying Ding:

RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification. 196-208 - Mark Endo

, Rayan Krishnan, Viswesh Krishna, Andrew Y. Ng, Pranav Rajpurkar:
Retrieval-Based Chest X-Ray Report Generation Using a Pre-trained Contrastive Language-Image Model. 209-219 - Oliver Carr, Avelino Javer, Patrick Rockenschaub, Owen Parsons, Robert Dürichen:

Longitudinal patient stratification of electronic health records with flexible adjustment for clinical outcomes. 220-238 - Chao Pang, Xinzhuo Jiang, Krishna S. Kalluri, Matthew E. Spotnitz, Ruijun Chen, Adler J. Perotte, Karthik Natarajan:

CEHR-BERT: Incorporating temporal information from structured EHR data to improve prediction tasks. 239-260 - Tianwei Yin, Zihui Wu, He Sun, Adrian V. Dalca, Yisong Yue, Katherine L. Bouman:

End-to-End Sequential Sampling and Reconstruction for MRI. 261-281 - Rui Li, Stephanie M. Hu

, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M. Sow, Piyush Madan, Jun Li, Mohamed F. Ghalwash, Zach Shahn, Li-Wei H. Lehman:
G-Net: a Recurrent Network Approach to G-Computation for Counterfactual Prediction Under a Dynamic Treatment Regime. 282-299

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














