


default search action
MLHC 2016: Sydney, Australia
- Finale Doshi-Velez, Jim Fackler, David C. Kale, Byron C. Wallace, Jenna Wiens:

Proceedings of the 1st Machine Learning in Health Care, MLHC 2016, Los Angeles, CA, USA, August 19-20, 2016. JMLR Workshop and Conference Proceedings 56, JMLR.org 2016
Accepted Papers
- Konstantinos Georgatzis, Christopher K. I. Williams, Christopher Hawthorne:

Input-Output Non-Linear Dynamical Systems applied to Physiological Condition Monitoring. 1-16 - Shalmali Joshi, Suriya Gunasekar, David A. Sontag, Joydeep Ghosh:

Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization. 17-41 - Joseph Futoma, Mark P. Sendak, Blake Cameron, Katherine A. Heller:

Predicting Disease Progression with a Model for Multivariate Longitudinal Clinical Data. 42-54 - Ilia Vovsha, Ansaf Salleb-Aouissi, Anita Raja, Thomas Koch, Alex Rybchuk, Axinia Radeva, Ashwath Rajan, Yiwen Huang, Hatim Diab, Ashish Tomar, Ronald J. Wapner:

Using Kernel Methods and Model Selection for Prediction of Preterm Birth. 55-72 - Narges Razavian, Jake Marcus, David A. Sontag:

Multi-task Prediction of Disease Onsets from Longitudinal Laboratory Tests. 73-100 - Rajesh Ranganath, Adler J. Perotte, Noémie Elhadad, David M. Blei:

Deep Survival Analysis. 101-114 - Bilal Ahmed, Thomas Thesen, Karen E. Blackmon, Ruben Kuzniecky, Orrin Devinsky, Jennifer G. Dy, Carla E. Brodley:

Multi-task Learning with Weak Class Labels: Leveraging iEEG to Detect Cortical Lesions in Cryptogenic Epilepsy. 115-133 - Rhiannon V. Rose, Daniel J. Lizotte:

gLOP: the global and Local Penalty for Capturing Predictive Heterogeneity. 134-149 - Yun Liu

, Collin M. Stultz, John V. Guttag, Kun-Ta Chuang, Fu-Wen Liang, Huey-Jen Su:
Transferring Knowledge from Text to Predict Disease Onset. 150-163 - Truyen Tran, Wei Luo, Dinh Q. Phung, Jonathan Morris, Kristen Rickard, Svetha Venkatesh:

Preterm Birth Prediction: Stable Selection of Interpretable Rules from High Dimensional Data. 164-177 - Pierre Thodoroff, Joelle Pineau, Andrew Lim:

Learning Robust Features using Deep Learning for Automatic Seizure Detection. 178-190 - Peter J. Schüffler, Judy Sarungbam, Hassan Muhammad, Ed Reznik, Satish K. Tickoo, Thomas J. Fuchs:

Mitochondria-based Renal Cell Carcinoma Subtyping: Learning from Deep vs. Flat Feature Representations. 191-208 - Yoni Halpern, Steven Horng, David A. Sontag:

Clinical Tagging with Joint Probabilistic Models. 209-225 - Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek, Bo C. Bertilson:

Diagnostic Prediction Using Discomfort Drawings with IBTM. 226-238 - Marzyeh Ghassemi, Zeeshan Syed, Daryush D. Mehta, Jarrad H. Van Stan, Robert E. Hillman, John V. Guttag:

Uncovering Voice Misuse Using Symbolic Mismatch. 239-252 - Zachary C. Lipton, David C. Kale, Randall C. Wetzel:

Directly Modeling Missing Data in Sequences with RNNs: Improved Classification of Clinical Time Series. 253-270 - John A. Quinn, Rose Nakasi

, Pius K. B. Mugagga, Patrick Byanyima, William Lubega, Alfred Andama:
Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics. 271-281 - Yanbo Xu, Yanxun Xu, Suchi Saria:

A Non-parametric Bayesian Approach for Estimating Treatment-Response Curves from Sparse Time Series. 282-300 - Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F. Stewart, Jimeng Sun:

Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. 301-318

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














