


default search action
MLHC 2023: New York, NY, USA
- Kaivalya Deshpande, Madalina Fiterau, Shalmali Joshi, Zachary C. Lipton, Rajesh Ranganath, Iñigo Urteaga, Serene Yeung:

Machine Learning for Healthcare Conference, MLHC 2023, 11-12 August 2023, New York, USA. Proceedings of Machine Learning Research 219, PMLR 2023 - Griffin Adams, Jason Zuckerg, Noémie Elhadad:

A Meta-Evaluation of Faithfulness Metrics for Long-Form Hospital-Course Summarization. 2-30 - Célia Wafa Ayad, Thomas Bonnier, Benjamin Bosch, Jesse Read, Sonali Parbhoo:

Which Explanation Makes Sense? A Critical Evaluation of Local Explanations for Assessing Cervical Cancer Risk. 31-49 - Ali Behrouz, Margo I. Seltzer:

Anomaly Detection in Human Brain via Inductive Learning on Temporal Multiplex Networks. 50-75 - David Calhas, Rui Henriques:

EEG to fMRI Synthesis Benefits from Attentional Graphs of Electrode Relationships. 76-93 - Cheng Cheng, Jeremy C. Weiss:

Typed Markers and Context for Clinical Temporal Relation Extraction. 94-109 - Rhys Compton, Lily H. Zhang, Aahlad Manas Puli, Rajesh Ranganath:

When More is Less: Incorporating Additional Datasets Can Hurt Performance By Introducing Spurious Correlations. 110-127 - Hyungrok Do, Yuxin Chang, Yoon-Sang Cho, Padhraic Smyth, Judy Zhong:

When More is Less: Incorporating Additional Datasets Can Hurt Performance By Introducing Spurious Correlations. 128-149 - Ahmed Elhussein, Gamze Gürsoy:

Privacy-preserving patient clustering for personalized federated learnings. 150-166 - Hamed Fayyaz, Abigail Strang, Rahmatollah Beheshti:

Bringing At-home Pediatric Sleep Apnea Testing Closer to Reality: A Multi-modal Transformer Approach. 167-185 - Muhammad Hasan Ferdous, Uzma Hasan, Md. Osman Gani:

CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data. 186-207 - David Elias Fresacher, Stefan Röhrl, Christian Klenk, Johanna Erber, Hedwig Irl, Dominik Heim, Manuel Lengl, Simon Schumann, Martin Knopp

, Martin Schlegel, Sebastian Rasch, Oliver Hayden, Klaus Diepold:
Composition Counts: A Machine Learning View on Immunothrombosis using Quantitative Phase Imaging. 208-229 - Faris F. Gulamali, Ashwin Sawant, Ira S. Hofer, Matthew A. Levin, Alexander Charney, Karandeep Singh, Benjamin S. Glicksberg, Girish N. Nadkarni:

Online Unsupervised Representation Learning of Waveforms in the Intensive Care Unit via a novel cooperative framework: Spatially Resolved Temporal Networks (SpaRTEn). 230-247 - Hao He, Yuan Yuan, Ying-Cong Chen, Peng Cao, Dina Katabi:

Contactless Oxygen Monitoring with Radio Waves and Gated Transformer. 248-265 - Danliang Ho, Mehul Motani:

Multi-view Modelling of Longitudinal Health Data for Improved Prognostication of Colorectal Cancer Recurrence. 265-284 - Zhe Huang, Benjamin S. Wessler, Michael C. Hughes:

Detecting Heart Disease from Multi-View Ultrasound Images via Supervised Attention Multiple Instance Learning. 285-307 - Yamac Alican Isik, Paidamoyo Chapfuwa, Connor Davis, Ricardo Henao:

Hawkes Process with Flexible Triggering Kernels. 308-320 - Hyewon Jeong, Collin M. Stultz, Marzyeh Ghassemi:

Deep Metric Learning for the Hemodynamics Inference with Electrocardiogram Signals. 321-342 - Sharon Jiang, Shannon Shen, Monica Agrawal, Barbara D. Lam, Nicholas Kurtzman, Steven Horng, David R. Karger, David A. Sontag:

Conceptualizing Machine Learning for Dynamic Information Retrieval of Electronic Health Record Notes. 343-359 - Mert Ketenci, Shreyas Bhave, Noemie Elhadad, Adler J. Perotte:

Maximum Likelihood Estimation of Flexible Survival Densities with Importance Sampling. 360-380 - Sameer Tajdin Khanna, Adam Dejl, Kibo Yoon, Steven Q. H. Truong, Hanh Duong, Agustina Saenz, Pranav Rajpurkar:

RadGraph2: Modeling Disease Progression in Radiology Reports via Hierarchical Information Extraction. 381-402 - Alex Labach, Aslesha Pokhrel, Xiao Shi Huang, Saba Zuberi, Seung Eun Yi, Maksims Volkovs, Tomi Poutanen, Rahul G. Krishnan:

DuETT: Dual Event Time Transformer for Electronic Health Records. 403-422 - Kwanhyung Lee, Soojeong Lee, Sangchul Hahn, Heejung Hyun, Edward Choi, Byungeun Ahn, Joohyung Lee:

Learning Missing Modal Electronic Health Records with Unified Multi-modal Data Embedding and Modality-Aware Attention. 423-442 - Rajiv Movva, Divya Shanmugam, Kaihua Hou, Priya Pathak, John V. Guttag, Nikhil Garg, Emma Pierson:

Coarse race data conceals disparities in clinical risk score performance. 443-472 - Makiya Nakashima, Donna Salem, W. H. Wilson Tang, Christopher Nguyen, Tae-Hyun Hwang, Ding Zhao, Byung-Hak Kim, Deborah Kwon, David Chen:

Reducing Contextual Bias in Cardiac Magnetic Resonance Imaging Deep Learning Using Contrastive Self-Supervision. 473-488 - Ahmed Ammar Naseer, Benjamin Walker, Christopher Landon, Andrew Ambrosy, Marat Fudim, Nicholas Wysham, Botros Toro, Sumanth Swaminathan, Terry J. Lyons:

ScoEHR: Generating Synthetic Electronic Health Records using Continuous-time Diffusion Models. 489-508 - Alexis Nolin-Lapalme, Robert Avram, Hussin Julie:

PrivECG: generating private ECG for end-to-end anonymization. 509-528 - Erkin Ötles, Brian T. Denton, Jenna Wiens:

Updating Clinical Risk Stratification Models Using Rank-Based Compatibility: Approaches for Evaluating and Optimizing Clinician-Model Team Performance. 529-547 - Anil Palepu, Andrew Beam:

TIER: Text-Image Entropy Regularization for Medical CLIP-style models. 548-564 - Jay B. Patel, Syed Rakin Ahmed, Ken Chang, Praveer Singh, Mishka Gidwani, Katharina Hoebel, Albert E. Kim, Christopher P. Bridge, Chung-Jen Teng, Xiaomei Li, Gongwen Xu, Megan McDonald, Ayal Aizer, Wenya Linda Bi, K. Ina Ly, Bruce Rosen, Priscilla K. Brastianos, Raymond Y. Huang, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer:

A Deep Learning Based Framework for Joint Image Registration and Segmentation of Brain Metastases on Magnetic Resonance Imaging. 565-587 - Melanie F. Pradier, Niranjani Prasad, Paidamoyo Chapfuwa, Sahra Ghalebikesabi, Maximilian Ilse, Steven Woodhouse, Rebecca Elyanow, Javier Zazo, Javier González Hernández, Julia Greissl, Edward Meeds:

AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires. 588-611 - Eric W. Prince

, Todd C. Hankinson, Carsten Görg:
EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings. 612-630 - Sanjana Ramprasad, Elisa Ferracane, Sai P. Selvaraj:

Generating more faithful and consistent SOAP notes using attribute-specific parameters. 631-649 - Mercy Prasanna Ranjit, Gopinath Ganapathy, Ranjit Manuel, Tanuja Ganu:

Retrieval Augmented Chest X-Ray Report Generation using OpenAI GPT models. 650-666 - Xiaobin Shen, Jonathan Elmer, George H. Chen:

Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using EEG Data: A Dynamic Survival Analysis Framework with Competing Risks. 667-690 - Pranav Singh, Jacopo Cirrone:

Efficient Representation Learning for Healthcare with Cross-Architectural Self-Supervision. 691-711 - Ömer Sümer, Rebekah L. Waikel, Suzanna E. Ledgister Hanchard, Dat Duong, Peter M. Krawitz, Cristina Conati, Benjamin D. Solomon, Elisabeth André:

Region-based Saliency Explanations on the Recognition of Facial Genetic Syndromes. 712-736 - Pranav Vaid, Serena Yeung, Anita Rau:

Robust Semi-supervised Detection of Hands in Diverse Open Surgery Environments. 736-753 - Somin Wadhwa, Jay DeYoung, Benjamin E. Nye, Silvio Amir, Byron C. Wallace:

Jointly Extracting Interventions, Outcomes, and Findings from RCT Reports with LLMs. 754-771 - Mengqian Wang, Ilya Valmianski, Xavier Amatriain, Anitha Kannan:

Learning functional sections in medical conversations: iterative pseudo-labeling and human-in-the-loop approach. 772-787 - Peiqi Wang, Yingcheng Liu, Ching-Yun Ko, William M. Wells III, Seth J. Berkowitz, Steven Horng, Polina Golland:

Sample-Specific Debiasing for Better Image-Text Models. 788-803 - Yuqing Wang, Yun Zhao, Linda R. Petzold:

Are Large Language Models Ready for Healthcare? A Comparative Study on Clinical Language Understanding. 804-823 - Sophie Wharrie, Zhiyu Yang, Andrea Ganna, Samuel Kaski:

Characterizing personalized effects of family information on disease risk using graph representation learning. 824-845 - Cliff Wong, Sheng Zhang, Yu Gu, Christine Moung, Jacob Abel, Naoto Usuyama, Roshanthi Weerasinghe, Brian Piening, Tristan Naumann, Carlo Bifulco, Hoifung Poon:

Scaling Clinical Trial Matching Using Large Language Models: A Case Study in Oncology. 846-862 - Yu Wu, Dimitris Spathis, Hong Jia, Ignacio Perez-Pozuelo, Tomas I. Gonzales, Søren Brage, Nicholas J. Wareham, Cecilia Mascolo:

UDAMA: Unsupervised Domain Adaptation through Multi-discriminator Adversarial Training with Noisy Labels Improves Cardio-fitness Prediction. 863-883 - Hongjing Xia, Joshua C. Chang, Sarah Nowak, Sonya Mahajan, Rohit Mahajan, Ted L. Chang, Carson C. Chow:

Interpretable (not just posthoc-explainable) heterogeneous survivors bias-corrected treatment effects for assignment of postdischarge interventions to prevent readmissions. 884-905 - Jiaai Xu, Rada Mihalcea, Elena Frank, Srijan Sen, Maggie Makar:

Uncovering the Varied Impact of Behavioral Change Messages on Population Groups. 906-922 - Lida Zhang, Bobak J. Mortazavi:

Semi-supervised Meta-learning for Multi-source Heterogeneity in Time-series Data. 923-941 - Jian Zhu, Ilya Valmianski, Anitha Kannan:

Dialogue-Contextualized Re-ranking for Medical History-Taking. 942-958

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














