


default search action
16th PPSN 2020: Leiden, The Netherlands - Part I
- Thomas Bäck

, Mike Preuss
, André H. Deutz
, Hao Wang
, Carola Doerr
, Michael T. M. Emmerich
, Heike Trautmann
:
Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I. Lecture Notes in Computer Science 12269, Springer 2020, ISBN 978-3-030-58111-4
Automated Algorithm Selection and Configuration
- Ying Bi

, Bing Xue, Mengjie Zhang:
Evolving Deep Forest with Automatic Feature Extraction for Image Classification Using Genetic Programming. 3-18 - George T. Hall

, Pietro S. Oliveto, Dirk Sudholt:
Fast Perturbative Algorithm Configurators. 19-32 - Arnaud Liefooghe

, Sébastien Vérel
, Bilel Derbel, Hernán E. Aguirre, Kiyoshi Tanaka:
Dominance, Indicator and Decomposition Based Search for Multi-objective QAP: Landscape Analysis and Automated Algorithm Selection. 33-47 - Moritz Seiler, Janina Pohl, Jakob Bossek, Pascal Kerschke

, Heike Trautmann
:
Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem. 48-64 - Sara Tari, Holger H. Hoos, Julie Jacques, Marie-Eléonore Kessaci

, Laetitia Jourdan:
Automatic Configuration of a Multi-objective Local Search for Imbalanced Classification. 65-77
Bayesian- and Surrogate-Assisted Optimization
- Youhei Akimoto, Naoki Sakamoto, Makoto Ohtani:

Multi-fidelity Optimization Approach Under Prior and Posterior Constraints and Its Application to Compliance Minimization. 81-94 - Marie Anastacio

, Holger H. Hoos:
Model-Based Algorithm Configuration with Default-Guided Probabilistic Sampling. 95-110 - Jakob Bossek, Carola Doerr

, Pascal Kerschke
, Aneta Neumann
, Frank Neumann:
Evolving Sampling Strategies for One-Shot Optimization Tasks. 111-124 - Guoxia Fu, Chaoli Sun, Ying Tan, Guochen Zhang, Yaochu Jin:

A Surrogate-Assisted Evolutionary Algorithm with Random Feature Selection for Large-Scale Expensive Problems. 125-139 - Alexander Hagg

, Dominik Wilde
, Alexander Asteroth
, Thomas Bäck
:
Designing Air Flow with Surrogate-Assisted Phenotypic Niching. 140-153 - Laurent Meunier, Carola Doerr

, Jérémy Rapin, Olivier Teytaud:
Variance Reduction for Better Sampling in Continuous Domains. 154-168 - Elena Raponi, Hao Wang, Mariusz Bujny, Simonetta Boria, Carola Doerr

:
High Dimensional Bayesian Optimization Assisted by Principal Component Analysis. 169-183 - Lauchlan Toal, Dirk V. Arnold

:
Simple Surrogate Model Assisted Optimization with Covariance Matrix Adaptation. 184-197
Benchmarking and Performance Measures
- Weiyu Chen, Hisao Ishibuchi, Ke Shang:

Proposal of a Realistic Many-Objective Test Suite. 201-214 - Andrzej Jaszkiewicz

, Robert Susmaga
, Piotr Zielniewicz
:
Approximate Hypervolume Calculation with Guaranteed or Confidence Bounds. 215-228 - Anna V. Kononova

, Fabio Caraffini
, Hao Wang
, Thomas Bäck
:
Can Compact Optimisation Algorithms Be Structurally Biased? 229-242 - Margarita Alejandra Rebolledo Coy, Frederik Rehbach, A. E. Eiben, Thomas Bartz-Beielstein

:
Parallelized Bayesian Optimization for Expensive Robot Controller Evolution. 243-256 - Ryoji Tanabe:

Revisiting Population Models in Differential Evolution on a Limited Budget of Evaluations. 257-272 - Martin Zaefferer

, Frederik Rehbach:
Continuous Optimization Benchmarks by Simulation. 273-286 - Alexandru-Ciprian Zavoianu, Benjamin Lacroix, John McCall:

Comparative Run-Time Performance of Evolutionary Algorithms on Multi-objective Interpolated Continuous Optimisation Problems. 287-300
Combinatorial Optimization
- Omar Abdelkafi, Bilel Derbel, Arnaud Liefooghe

, Darrell Whitley:
On the Design of a Partition Crossover for the Quadratic Assignment Problem. 303-316 - Mohammad Bagherbeik

, Parastoo Ashtari
, Seyed Farzad Mousavi
, Kouichi Kanda, Hirotaka Tamura
, Ali Sheikholeslami
:
A Permutational Boltzmann Machine with Parallel Tempering for Solving Combinatorial Optimization Problems. 317-331 - Léa Blaise, Christian Artigues, Thierry Benoist:

Solution Repair by Inequality Network Propagation in LocalSolver. 332-345 - Jakob Bossek, Aneta Neumann

, Frank Neumann:
Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. 346-359 - Lee A. Christie

:
Decentralized Combinatorial Optimization. 360-372 - Chuan Luo, Holger H. Hoos, Shaowei Cai

:
PbO-CCSAT: Boosting Local Search for Satisfiability Using Programming by Optimisation. 373-389 - Lily Major

, Amanda Clare
, Jacqueline W. Daykin
, Benjamin Mora
, Leonel Jose Peña Gamboa
, Christine Zarges
:
Evaluation of a Permutation-Based Evolutionary Framework for Lyndon Factorizations. 390-403 - Aneta Neumann

, Frank Neumann:
Optimising Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-objective Algorithms. 404-417 - Szymon Wozniak

, Michal Przewozniczek
, Marcin M. Komarnicki
:
Parameter-Less Population Pyramid for Permutation-Based Problems. 418-430
Connection Between Nature-Inspired Optimization and Artificial Intelligence
- Marcin Bialas

, Marcin Michal Mironczuk
, Jacek Mandziuk
:
Biologically Plausible Learning of Text Representation with Spiking Neural Networks. 433-447 - Susanne Dandl

, Christoph Molnar
, Martin Binder, Bernd Bischl
:
Multi-Objective Counterfactual Explanations. 448-469 - Wenjing Hong, Peng Yang, Yiwen Wang, Ke Tang:

Multi-objective Magnitude-Based Pruning for Latency-Aware Deep Neural Network Compression. 470-483 - Shengxiang Hu, Bofeng Zhang, Ying Lv, Furong Chang, Zhuocheng Zhou:

Network Representation Learning Based on Topological Structure and Vertex Attributes. 484-497 - Stanislaw Kazmierczak

, Jacek Mandziuk
:
A Committee of Convolutional Neural Networks for Image Classification in the Concurrent Presence of Feature and Label Noise. 498-511 - Jiawen Kong, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck

:
Improving Imbalanced Classification by Anomaly Detection. 512-523 - Romain Orhand, Anne Jeannin-Girardon, Pierre Parrend

, Pierre Collet:
BACS: A Thorough Study of Using Behavioral Sequences in ACS2. 524-538 - Mihai-Alexandru Suciu

, Rodica Ioana Lung
:
Nash Equilibrium as a Solution in Supervised Classification. 539-551 - Jamal Toutouh, Erik Hemberg, Una-May O'Reilly:

Analyzing the Components of Distributed Coevolutionary GAN Training. 552-566 - Wenjing Wang, Yuwu Lu, Zhihui Lai

:
Canonical Correlation Discriminative Learning for Domain Adaptation. 567-580
Genetic and Evolutionary Algorithms
- Stephen Friess, Peter Tiño

, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Improving Sampling in Evolution Strategies Through Mixture-Based Distributions Built from Past Problem Instances. 583-596 - Tobias Glasmachers

, Oswin Krause
:
The Hessian Estimation Evolution Strategy. 597-609 - Johannes Lengler

, Jonas Meier:
Large Population Sizes and Crossover Help in Dynamic Environments. 610-622 - Pawel Liskowski, Krzysztof Krawiec

, Nihat Engin Toklu:
Neuromemetic Evolutionary Optimization. 623-636 - Nicola Mc Donnell

, Enda Howley
, Jim Duggan
:
Evolved Gossip Contracts - A Framework for Designing Multi-agent Systems. 637-649 - Oscar Pacheco-Del-Moral, Carlos A. Coello Coello

:
A SHADE-Based Algorithm for Large Scale Global Optimization. 650-663 - Amirhossein Rajabi

, Carsten Witt
:
Evolutionary Algorithms with Self-adjusting Asymmetric Mutation. 664-677 - Franciszek Seredynski

, Jakub Gasior
:
Behavior Optimization in Large Distributed Systems Modeled by Cellular Automata. 678-690 - Gresa Shala, André Biedenkapp, Noor H. Awad, Steven Adriaensen, Marius Lindauer

, Frank Hutter:
Learning Step-Size Adaptation in CMA-ES. 691-706 - Konstantinos Varelas, Anne Auger, Nikolaus Hansen

:
Sparse Inverse Covariance Learning for CMA-ES with Graphical Lasso. 707-718 - Teppei Yamaguchi, Kento Uchida

, Shinichi Shirakawa:
Adaptive Stochastic Natural Gradient Method for Optimizing Functions with Low Effective Dimensionality. 719-731

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














