


default search action
RecSys 2016: Boston, MA, USA - Challenge
- Fabian Abel, András A. Benczúr, Daniel Kohlsdorf, Martha A. Larson, Róbert Pálovics:

Proceedings of the 2016 Recommender Systems Challenge, RecSys Challenge 2016, Boston, Massachusetts, USA, September 15, 2016. ACM 2016, ISBN 978-1-4503-4801-0 - Mirko Polato

, Fabio Aiolli:
A preliminary study on a recommender system for the job recommendation challenge. 1:1-1:4 - Chenrui Zhang, Xueqi Cheng:

An ensemble method for job recommender systems. 2:1-2:4 - Jose Ignacio Honrado, Oscar Huarte, Cesar Jimenez, Sebastian Ortega, José R. Pérez-Agüera, Joaquín Pérez-Iglesias, Álvaro Polo, Gabriel Rodríguez:

Jobandtalent at RecSys Challenge 2016. 3:1-3:5 - Sonu K. Mishra, Manoj Reddy:

A bottom-up approach to job recommendation system. 4:1-4:4 - Toon De Pessemier, Kris Vanhecke, Luc Martens:

A scalable, high-performance Algorithm for hybrid job recommendations. 5:1-5:4 - Vasily A. Leksin, Andrey Ostapets:

Job recommendation based on factorization machine and topic modelling. 6:1-6:4 - Kuan Liu, Xing Shi, Anoop Kumar, Linhong Zhu, Prem Natarajan:

Temporal learning and sequence modeling for a job recommender system. 7:1-7:4 - Tommaso Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi, Paolo Cremonesi

, Roberto Pagano, Massimo Quadrana:
Multi-stack ensemble for job recommendation. 8:1-8:4 - Dávid Zibriczky:

A combination of simple models by forward predictor selection for job recommendation. 9:1-9:4 - Andrzej Pacuk

, Piotr Sankowski, Karol Wegrzycki
, Adam Witkowski, Piotr Wygocki:
RecSys Challenge 2016: job recommendations based on preselection of offers and gradient boosting. 10:1-10:4 - Wenming Xiao, Xiao Xu, Kang Liang, Junkang Mao, Jun Wang:

Job recommendation with Hawkes process: an effective solution for RecSys Challenge 2016. 11:1-11:4

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














