


default search action
RecSys 2021: Amsterdam, The Netherlands - Challenge
- RecSys Challenge 2021: Proceedings of the Recommender Systems Challenge 2021, Amsterdam, The Netherlands, 1 October 2021. ACM 2021, ISBN 978-1-4503-8693-7

- Luca Belli, Alykhan Tejani, Frank Portman, Alexandre Lung-Yut-Fong, Ben Chamberlain, Yuanpu Xie, Kristian Lum, Jonathan Hunt, Michael M. Bronstein, Vito Walter Anelli, Saikishore Kalloori, Bruce Ferwerda, Wenzhe Shi:

The 2021 RecSys Challenge Dataset: Fairness is not optional. 1-6 - Chris Deotte, Bo Liu, Benedikt Schifferer, Gilberto Titericz:

GPU Accelerated Boosted Trees and Deep Neural Networks for Better Recommender Systems. 7-14 - Michal Daniluk, Jacek Dabrowski, Barbara Rychalska, Konrad Goluchowski:

Synerise at RecSys 2021: Twitter user engagement prediction with a fast neural model. 15-21 - Maksims Volkovs, Felipe Pérez, Zhaoyue Cheng, Jianing Sun, Sajad Norouzi, Anson Wong, Pawel Jankiewicz, Barum Rho:

User Engagement Modeling with Deep Learning and Language Models. 22-27 - Luca Carminati

, Giacomo Lodigiani, Pietro Maldini, Samuele Meta, Stiven Metaj, Arcangelo Pisa, Alessandro Sanvito
, Mattia Surricchio, Fernando Benjamín Pérez Maurera
, Cesare Bernardis, Maurizio Ferrari Dacrema
:
Lightweight and Scalable Model for Tweet Engagements Predictions in a Resource-constrained Environment. 28-33 - Pere Gilabert

, Santi Seguí:
Addressing the cold-start problem with a two-branch architecture for fair tweet recommendation. 34-38 - Alexander Krauck, David Penz, Markus Schedl:

Team JKU-AIWarriors in the ACM Recommender Systems Challenge 2021: Lightweight XGBoost Recommendation Approach Leveraging User Features. 39-43

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














