


default search action
2nd SDM 2002: Arlington, VA, USA
- Robert L. Grossman, Jiawei Han, Vipin Kumar, Heikki Mannila, Rajeev Motwani:

Proceedings of the Second SIAM International Conference on Data Mining, Arlington, VA, USA, April 11-13, 2002. SIAM 2002, ISBN 978-0-89871-517-0
Part I: Visualization and Applications
- Ian Davidson:

Visualizing Clustering Results. 3-18 - Li Zhang, Chun Tang, Yong Shi, Yuqing Song, Aidong Zhang, Murali Ramanathan:

VizCluster: An Interactive Visualization Approach to Cluster Analysis and Its Application on Microarray Data. 19-40 - Wei Fan, Salvatore J. Stolfo:

Ensemble-based Adaptive Intrusion Detection. 41-58 - Kai Yu, Xiaowei Xu, Jianjua Tao, Martin Ester, Hans-Peter Kriegel:

Instance Selection Techniques for Memory-based Collaborative Filtering. 59-74
Part II: Mining Large Data Sets
- Ruoming Jin, Gagan Agrawal:

Shared Memory Paraellization of Data Mining Algorithms: Techniques, Programming Interface, and Performance. 77-94 - Arindam Choudhury, Prasanth B. Nair, Andy J. Keane:

A Data Parallel Approach for Large-Scale Gaussian Process Modeling. 95-111 - Yi Xia, Wei Wang, Jiong Yang, Philip S. Yu, Richard R. Muntz:

Efficient Filtering of Large DatasetA User-Centric Paradigm. 112-127 - Peter van der Putten, Joost N. Kok, Amar Gupta:

Why the Information Explosion Can Be Bad for Data Mining, and How Data Fusion Provides a Way Out. 128-138
Part III: Mining Sequential and Structured Patterns
- Cheng-Ru Lin, Ming-Syan Chen:

On the Optimal Clustering of Sequential Data. 141-157 - Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroki Arimura, Hiroshi Sakamoto, Setsuo Arikawa:

Efficient Substructure Discovery from Large Semi-structured Data. 158-174 - Gao Cong, Lan Yi, Bing Liu, Ke Wang:

Discovering Frequent Substructures from Hierarchical Semi-structured Data. 175-192
Part IV: Time Series Analysis
- Selina Chu, Eamonn J. Keogh, David M. Hart, Michael J. Pazzani:

Iterative Deepening Dynamic Time Warping for Time Series. 195-212 - João B. D. Cabrera, Raman K. Mehra:

Extracting Precursor Rules from Time SeriesA Classical Statistical Viewpoint. 213-228 - Christopher Meek, David Maxwell Chickering, David Heckerman:

Autoregressive Tree Models for Time-Series Analysis. 229-244
Part V: Support Vector Machine and Neural Networks
- Glenn Fung, Olvi L. Mangasarian:

Incremental Support Vector Machine Classification. 247-260 - Michinari Momma, Kristin P. Bennett:

A Pattern Search Method for Model Selection of Support Vector Regression. 261-274 - Olivier Adam, Olivier Léonard:

Explicit Thermodynamic Properties using Radial Basis Functions Neural Networks. 275-296
Part VI: Clustering
- Sergio M. Savaresi, Daniel Boley, Sergio Bittanti, Giovanna Gazzaniga:

Cluster Selection in Divisive Clustering Algorithms. 299-314 - Hasan Davulcu, Saikat Mukherjee, I. V. Ramakrishnan:

A Clustering Technique for Mining Data from Text Tables. 315-332 - Arindam Banerjee, Joydeep Ghosh:

On Scaling Up Balanced Clustering Algorithms. 333-349
Part VII: Classification and Decision Tables
- Carlotta Domeniconi, Dimitrios Gunopulos:

Efficient Local Flexible Nearest Neighbor Classification. 353-369 - Chandrika Kamath, Erick Cantú-Paz, David Littau:

Approximate Splitting for Ensembles of Trees using Histograms. 370-383 - Rattikorn Hewett, John H. Leuchner:

The Power of Second-Order Decision Tables. 384-399
Part VIII: Causality Rules and Relation Learning
- Chang-Hung Lee, Philip S. Yu, Ming-Syan Chen:

Mining Relationship between Triggering and Consequential Events in a Short Transaction Database. 403-419 - Pavel Berkhin, Jonathan D. Becher:

Learning Simple Relations: Theory and Applications. 420-436 - Wei Fan, Haixun Wang, Philip S. Yu, Salvatore J. Stolfo:

A Framework for Scalable Cost-sensitive Learning Based on Combing Probabilities and Benefits. 437-453
Part IX: Mining Frequent Patterns
- Mohammed Javeed Zaki, Ching-Jiu Hsiao:

CHARM: An Efficient Algorithm for Closed Itemset Mining. 457-473 - Vasileios Megalooikonomou:

Evaluating the Performance of Association Mining Methods in 3-D Medical Image Databases. 474-493 - Adriano Veloso, Wagner Meira Jr., Márcio de Carvalho, Bruno Pôssas, Srinivasan Parthasarathy, Mohammed Javeed Zaki:

Mining Frequent Itemsets in Evolving Databases. 494-510 - Feng Liang, Sheng Ma, Joseph L. Hellerstein:

Discovering Fully Dependent Patterns. 511-527
Part X: Applications
- Olfa Nasraoui, Raghu Krishnapuram:

One Step Evolutionary Mining of Context Sensitive Associations and Web Navigation Patterns. 531-547 - Pankaj Kankar, Sudeshna Adak, A. Sarkar, K. Murali, Gaurav Sharma:

MedMeSH Summarizer: Text Mining for Gene Clusters. 548-565 - Ramesh Natarajan, Edwin P. D. Pednault:

Segmented Regression Estimators for Massive Data Sets. 566-582 - Bertis B. Little

, Walter L. Johnston, Ashley C. Lovell, Roderick M. Rejesus, Steve A. Steed:
Collusion in the U. S. Crop Insurance Program: Applied Data Mining. 583-597

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














