


default search action
12th SemEval@NAACL-HLT 2018: New Orleans, Louisiana, USA
- Marianna Apidianaki, Saif M. Mohammad, Jonathan May, Ekaterina Shutova, Steven Bethard, Marine Carpuat:

Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, June 5-6, 2018. Association for Computational Linguistics 2018, ISBN 978-1-948087-20-9 - Saif M. Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, Svetlana Kiritchenko:

SemEval-2018 Task 1: Affect in Tweets. 1-17 - Venkatesh Duppada, Royal Jain, Sushant Hiray:

SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets. 18-23 - Francesco Barbieri, José Camacho-Collados, Francesco Ronzano, Luis Espinosa Anke, Miguel Ballesteros, Valerio Basile, Viviana Patti, Horacio Saggion:

SemEval 2018 Task 2: Multilingual Emoji Prediction. 24-33 - Çagri Çöltekin, Taraka Rama:

Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction. 34-38 - Cynthia Van Hee, Els Lefever, Véronique Hoste:

SemEval-2018 Task 3: Irony Detection in English Tweets. 39-50 - Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin Liu, Zhigang Yuan, Yongfeng Huang:

THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-task Learning. 51-56 - Jinho D. Choi, Henry Y. Chen:

SemEval 2018 Task 4: Character Identification on Multiparty Dialogues. 57-64 - Laura Aina, Carina Silberer, Ionut-Teodor Sorodoc, Matthijs Westera

, Gemma Boleda:
AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library. 65-69 - Marten Postma, Filip Ilievski, Piek Vossen:

SemEval-2018 Task 5: Counting Events and Participants in the Long Tail. 70-80 - Paramita Mirza, Fariz Darari, Rahmad Mahendra:

KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents. 81-87 - Egoitz Laparra, Dongfang Xu

, Ahmed Elsayed, Steven Bethard, Martha Palmer:
SemEval 2018 Task 6: Parsing Time Normalizations. 88-96 - Amy L. Olex, Luke Maffey, Nicholas Morgan, Bridget T. McInnes:

Chrono at SemEval-2018 Task 6: A System for Normalizing Temporal Expressions. 97-101 - Mauro Dragoni:

NEUROSENT-PDI at SemEval-2018 Task 1: Leveraging a Multi-Domain Sentiment Model for Inferring Polarity in Micro-blog Text. 102-108 - Maja Karasalo, Mattias Nilsson, Magnus Rosell, Ulrika Wickenberg Bolin:

FOI DSS at SemEval-2018 Task 1: Combining LSTM States, Embeddings, and Lexical Features for Affect Analysis. 109-115 - Zhengxin Zhang, Qimin Zhou, Hao Wu

:
NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Determination. 116-122 - Luna De Bruyne, Orphée De Clercq, Véronique Hoste:

LT3 at SemEval-2018 Task 1: A classifier chain to detect emotions in tweets. 123-127 - Flor Miriam Plaza del Arco, Salud María Jiménez-Zafra, Maite Martín-Valdivia, Luis Alfonso Ureña López:

SINAI at SemEval-2018 Task 1: Emotion Recognition in Tweets. 128-132 - Pavel Pribán, Tomás Hercig, Ladislav Lenc:

UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets. 133-140 - Yanghoon Kim, Hwanhee Lee

, Kyomin Jung:
AttnConvnet at SemEval-2018 Task 1: Attention-based Convolutional Neural Networks for Multi-label Emotion Classification. 141-145 - Mario Graff, Sabino Miranda-Jiménez

, Eric Sadit Tellez, Daniela Moctezuma:
INGEOTEC at SemEval-2018 Task 1: EvoMSA and μTC for Sentiment Analysis. 146-150 - Guillaume Daval-Frerot, Abdessalam Bouchekif, Anatole Moreau:

Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach. 151-155 - Masaki Aono, Shinnosuke Himeno:

KDE-AFFECT at SemEval-2018 Task 1: Estimation of Affects in Tweet by Using Convolutional Neural Network for n-gram. 156-161 - Aysu Ezen-Can, Ethem F. Can:

RNN for Affects at SemEval-2018 Task 1: Formulating Affect Identification as a Binary Classification Problem. 162-166 - Hala Mulki, Chedi Bechikh Ali, Hatem Haddad, Ismail Babaoglu:

Tw-StAR at SemEval-2018 Task 1: Preprocessing Impact on Multi-label Emotion Classification. 167-171 - Dmitry Kravchenko

, Lidia Pivovarova:
DL Team at SemEval-2018 Task 1: Tweet Affect Detection using Sentiment Lexicons and Embeddings. 172-176 - Ramona Andreea Turcu, Sandra Maria Amarandei, Iuliana Alexandra Flescan-Lovin-Arseni, Daniela Gîfu, Diana Trandabat:

EmoIntens Tracker at SemEval-2018 Task 1: Emotional Intensity Levels in #Tweets. 177-180 - Ahmed Husseini Orabi, Mahmoud Husseini Orabi, Diana Inkpen, David Van Bruwaene:

uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based Network. 181-185 - Chuhan Wu, Fangzhao Wu, Junxin Liu, Zhigang Yuan, Sixing Wu, Yongfeng Huang:

THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention CNN-LSTM. 186-192 - Mohammed Jabreel, Antonio Moreno:

EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for Emotion Analysis of Tweets. 193-199 - Tariq Ahmad, Allan Ramsay, Hanady Ahmed:

CENTEMENT at SemEval-2018 Task 1: Classification of Tweets using Multiple Thresholds with Self-correction and Weighted Conditional Probabilities. 200-204 - Min Wang, Xiaobing Zhou:

Yuan at SemEval-2018 Task 1: Tweets Emotion Intensity Prediction using Ensemble Recurrent Neural Network. 205-209 - Mostafa Abdou, Artur Kulmizev, Joan Ginés i Ametllé:

AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in tweets. 210-217 - Alon Rozental, Daniel Fleischer:

Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN Attention Mechanism for Sentiment Classification. 218-225 - Zi Yuan Gao, Chia-Ping Chen:

deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets. 226-230 - Huimin Xu, Man Lan, Yuanbin Wu:

ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using Effective Features and Machine Learning Models. 231-235 - Gilbert Badaro, Obeida El Jundi, Alaa Khaddaj, Alaa Maarouf, Raslan Kain, Hazem M. Hajj, Wassim El-Hajj:

EMA at SemEval-2018 Task 1: Emotion Mining for Arabic. 236-244 - Christos Baziotis, Athanasiou Nikolaos, Alexandra Chronopoulou, Athanasia Kolovou, Georgios Paraskevopoulos, Nikolaos Ellinas, Shrikanth S. Narayanan, Alexandros Potamianos:

NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning. 245-255 - Raj Kumar Gupta, Yinping Yang

:
CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting Emotion Intensity using Affective Lexicons. 256-263 - Ji Ho Park, Peng Xu

, Pascale Fung:
PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge from emoji and #hashtags. 264-272 - You Zhang, Jin Wang, Xuejie Zhang:

YNU-HPCC at SemEval-2018 Task 1: BiLSTM with Attention based Sentiment Analysis for Affect in Tweets. 273-278 - Marloes Kuijper, Mike van Lenthe, Rik van Noord:

UG18 at SemEval-2018 Task 1: Generating Additional Training Data for Predicting Emotion Intensity in Spanish. 279-285 - Meng Li, Zhenyuan Dong, Zhihao Fan, Kongming Meng, Jinghua Cao, Guanqi Ding, Yuhan Liu, Jiawei Shan, Binyang Li:

ISCLAB at SemEval-2018 Task 1: UIR-Miner for Affect in Tweets. 286-290 - Hardik Meisheri, Lipika Dey:

TCS Research at SemEval-2018 Task 1: Learning Robust Representations using Multi-Attention Architecture. 291-299 - Youngmin Kim, Hyunju Lee:

DMCB at SemEval-2018 Task 1: Transfer Learning of Sentiment Classification Using Group LSTM for Emotion Intensity prediction. 300-304 - Habibeh Naderi, Behrouz Haji Soleimani, Saif M. Mohammad, Svetlana Kiritchenko, Stan Matwin:

DeepMiner at SemEval-2018 Task 1: Emotion Intensity Recognition Using Deep Representation Learning. 305-312 - Zewen Chi, Heyan Huang, Jiangui Chen, Hao Wu, Ran Wei:

Zewen at SemEval-2018 Task 1: An Ensemble Model for Affect Prediction in Tweets. 313-318 - Nidhin A. Unnithan, Shalini K, Barathi Ganesh H. B., M. Anand Kumar

, Soman K. P:
Amrita_student at SemEval-2018 Task 1: Distributed Representation of Social Media Text for Affects in Tweets. 319-323 - Angel Deborah S, Rajalakshmi Sivanaiah, Sakaya Milton Rajendram, T. T. Mirnalinee:

SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection Using Rule Based Feature Selection. 324-328 - Naveen J. R, Barathi Ganesh H. B., M. Anand Kumar

, Soman K. P:
CENNLP at SemEval-2018 Task 1: Constrained Vector Space Model in Affects in Tweets. 329-333 - Anon George, Barathi Ganesh H. B., Anand Kumar M

, Soman K. P:
TeamCEN at SemEval-2018 Task 1: Global Vectors Representation in Emotion Detection. 334-338 - Bhaskar Kotakonda, Prashanth Gowda, Brejesh Lall:

IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction. 339-344 - Pan Du, Jian-Yun Nie:

Mutux at SemEval-2018 Task 1: Exploring Impacts of Context Information On Emotion Detection. 345-349 - Malak Abdullah, Samira Shaikh:

TeamUNCC at SemEval-2018 Task 1: Emotion Detection in English and Arabic Tweets using Deep Learning. 350-357 - Venkatesh Elango, Karan Uppal:

RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep Learning. 358-363 - El Moatez Billah Nagoudi:

ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Prediction in Arabic Tweets. 364-368 - Grace Gee, Eugene Wang:

psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and Emotion Analysis. 369-376 - Abhishek Avinash Narwekar, Roxana Girju:

UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models. 377-384 - Thomas Nyegaard-Signori, Casper Veistrup Helms, Johannes Bjerva, Isabelle Augenstein:

KU-MTL at SemEval-2018 Task 1: Multi-task Identification of Affect in Tweets. 385-389 - Man Liu:

EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with Gradient Boosting Regression Tree Method and Bidirectional LSTM. 390-394 - Zhenduo Wang, Ted Pedersen:

UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural Network on Subword Embedding. 395-399 - Jonathan Beaulieu, Dennis Asamoah Owusu:

UMDuluth-CS8761 at SemEval-2018 Task 2: Emojis: Too many Choices? 400-404 - Larisa Alexa, Alina Beatrice Lorent, Daniela Gîfu, Diana Trandabat:

The Dabblers at SemEval-2018 Task 2: Multilingual Emoji Prediction. 405-409 - Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu, Yongfeng Huang:

THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention for English Emoji Prediction. 410-414 - Rita Almeida Ribeiro, Nádia Félix F. da Silva:

#TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tweets. 415-418 - Yufei Xie, Qingqing Song:

EICA Team at SemEval-2018 Task 2: Semantic and Metadata-based Features for Multilingual Emoji Prediction. 419-422 - Shiyun Chen, Maoquan Wang, Liang He:

EmojiIt at SemEval-2018 Task 2: An Effective Attention-Based Recurrent Neural Network Model for Emoji Prediction with Characters Gated Words. 423-427 - Jing Chen, Dechuan Yang, Xilian Li, Wei Chen, Tengjiao Wang:

Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach for Emoji Prediction. 428-432 - Xingwu Lu, Xin Mao, Man Lan, Yuanbin Wu:

ECNU at SemEval-2018 Task 2: Leverage Traditional NLP Features and Neural Networks Methods to Address Twitter Emoji Prediction Task. 433-437 - Christos Baziotis, Athanasiou Nikolaos, Athanasia Kolovou, Georgios Paraskevopoulos, Nikolaos Ellinas, Alexandros Potamianos:

NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-aware Attention. 438-444 - Joël Coster, Reinder Gerard Dalen, Nathalie Adriënne Jacqueline Stierman:

Hatching Chick at SemEval-2018 Task 2: Multilingual Emoji Prediction. 445-448 - Liyuan Zhou, Qiongkai Xu

, Hanna Suominen
, Tom Gedeon:
EPUTION at SemEval-2018 Task 2: Emoji Prediction with User Adaption. 449-453 - Daphne Groot, Rémon Kruizinga, Hennie Veldthuis, Simon Wit, Hessel Haagsma:

PickleTeam! at SemEval-2018 Task 2: English and Spanish Emoji Prediction from Tweets. 454-458 - Nan Wang, Jin Wang, Xuejie Zhang:

YNU-HPCC at SemEval-2018 Task 2: Multi-ensemble Bi-GRU Model with Attention Mechanism for Multilingual Emoji Prediction. 459-465 - Dimitrios Effrosynidis, Georgios Peikos

, Symeon Symeonidis, Avi Arampatzis:
DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets. 466-469 - Angelo Basile, Kenny W. Lino:

TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction. 470-476 - Fabio Massimo Zanzotto, Andrea Santilli:

SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons. 477-481 - Shuning Jin, Ted Pedersen:

Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and Oversampling. 482-485 - Naveen J. R, Hariharan V, Barathi Ganesh H. B., M. Anand Kumar

, Soman K. P:
CENNLP at SemEval-2018 Task 2: Enhanced Distributed Representation of Text using Target Classes for Emoji Prediction Representation. 486-490 - Luciano Gerber

, Matthew Shardlow:
Manchester Metropolitan at SemEval-2018 Task 2: Random Forest with an Ensemble of Features for Predicting Emoji in Tweets. 491-496 - Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova, Momchil Hardalov, Ivan Koychev, Ivelina Nikolova, Galia Angelova:

Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical Attention Neural Networks and Support Vector Machine. 497-501 - Gaël Guibon, Magalie Ochs, Patrice Bellot

:
LIS at SemEval-2018 Task 2: Mixing Word Embeddings and Bag of Features for Multilingual Emoji Prediction. 502-506 - Kevin Swanberg, Madiha Mirza, Ted Pedersen, Zhenduo Wang:

ALANIS at SemEval-2018 Task 3: A Feature Engineering Approach to Irony Detection in English Tweets. 507-511 - Mauro Dragoni:

NEUROSENT-PDI at SemEval-2018 Task 3: Understanding Irony in Social Networks Through a Multi-Domain Sentiment Model. 512-519 - Tomás Hercig:

UWB at SemEval-2018 Task 3: Irony detection in English tweets. 520-524 - Thanh Vu, Dat Quoc Nguyen, Xuan-Son Vu, Dai Quoc Nguyen, Michael Catt, Michael Trenell:

NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter. 525-530 - Bilal Ghanem, Francisco M. Rangel Pardo, Paolo Rosso:

LDR at SemEval-2018 Task 3: A Low Dimensional Text Representation for Irony Detection. 531-536 - Edison Marrese-Taylor, Suzana Ilic, Jorge A. Balazs, Helmut Prendinger, Yutaka Matsuo:

IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets. 537-540 - Elena Mikhalkova, Yuri Karyakin, Alexander Voronov, Dmitry Grigoriev, Artem Leoznov:

PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor Analysis. 541-545 - Won-Ik Cho, Woo Hyun Kang, Nam Soo Kim:

HashCount at SemEval-2018 Task 3: Concatenative Featurization of Tweet and Hashtags for Irony Detection. 546-552 - Omid Rohanian, Shiva Taslimipoor, Richard Evans, Ruslan Mitkov:

WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony. 553-559 - Aidan San:

Random Decision Syntax Trees at SemEval-2018 Task 3: LSTMs and Sentiment Scores for Irony Detection. 560-564 - José-Ángel González, Lluís-F. Hurtado, Ferran Pla:

ELiRF-UPV at SemEval-2018 Tasks 1 and 3: Affect and Irony Detection in Tweets. 565-569 - Aniruddha Ghosh, Tony Veale

:
IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media. 570-575 - Myan Sherif, Sherine Mamdouh, Wegdan Ghazi:

CTSys at SemEval-2018 Task 3: Irony in Tweets. 576-580 - Usman Ahmed, Lubna Zafar, Faiza Qayyum, Muhammad Arshad Islam:

Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using Word Graph. 581-586 - Edward Dearden, Alistair Baron:

Lancaster at SemEval-2018 Task 3: Investigating Ironic Features in English Tweets. 587-593 - Delia Irazú Hernández Farías, Fernando Sánchez-Vega, Manuel Montes-y-Gómez, Paolo Rosso:

INAOE-UPV at SemEval-2018 Task 3: An Ensemble Approach for Irony Detection in Twitter. 594-599 - Zhenghang Yin, Feixiang Wang, Man Lan, Wenting Wang:

ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from Tweets via Machine Learning and Deep Learning Methods. 600-606 - Luise Dürlich:

KLUEnicorn at SemEval-2018 Task 3: A Naive Approach to Irony Detection. 607-612 - Christos Baziotis, Athanasiou Nikolaos, Pinelopi Papalampidi, Athanasia Kolovou, Georgios Paraskevopoulos, Nikolaos Ellinas, Alexandros Potamianos:

NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of Word and Character Level Attentive RNNs. 613-621 - Bo Peng, Jin Wang, Xuejie Zhang:

YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models for Irony Detection on Twitter. 622-627 - Nishant Nikhil, Muktabh Mayank Srivastava:

Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning for irony detection. 628-632 - Rajalakshmi Sivanaiah, Angel Deborah S, Sakaya Milton Rajendram, T. T. Mirnalinee:

SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using MultiLayer Perceptron. 633-637 - Harsh Rangwani, Devang Kulshreshtha, Anil Kumar Singh

:
NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features and Emoji pre-trained CNN for Irony Detection in Tweets. 638-642 - Delia Irazú Hernández Farías, Viviana Patti, Paolo Rosso:

ValenTO at SemEval-2018 Task 3: Exploring the Role of Affective Content for Detecting Irony in English Tweets. 643-648 - Endang Wahyu Pamungkas, Viviana Patti:

#NonDicevoSulSerio at SemEval-2018 Task 3: Exploiting Emojis and Affective Content for Irony Detection in English Tweets. 649-654 - Cheon-Eum Park, Heejun Song, Changki Lee:

KNU CI System at SemEval-2018 Task4: Character Identification by Solving Sequence-Labeling Problem. 655-659 - Piek Vossen

:
NewsReader at SemEval-2018 Task 5: Counting events by reasoning over event-centric-knowledge-graphs. 660-666 - Carla Abreu, Eugénio Oliveira:

FEUP at SemEval-2018 Task 5: An Experimental Study of a Question Answering System. 667-673 - Yingchi Liu, Quanzhi Li, Luo Si:

NAI-SEA at SemEval-2018 Task 5: An Event Search System. 674-678 - Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh, Haïfa Zargayouna, Thierry Charnois:

SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers. 679-688 - Jonathan Rotsztejn, Nora Hollenstein, Ce Zhang:

ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction. 689-696 - Peter Phandi, Amila Silva

, Wei Lu
:
SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports using Natural Language Processing (SecureNLP). 697-706 - Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li, Linlin Li, Si Luo:

DM_NLP at SemEval-2018 Task 8: neural sequence labeling with linguistic features. 707-711 - José Camacho-Collados, Claudio Delli Bovi, Luis Espinosa Anke, Sergio Oramas, Tommaso Pasini, Enrico Santus, Vered Shwartz, Roberto Navigli, Horacio Saggion:

SemEval-2018 Task 9: Hypernym Discovery. 712-724 - Gabriel Bernier-Colborne, Caroline Barrière:

CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym Discovery. 725-731 - Alicia Krebs, Alessandro Lenci, Denis Paperno:

SemEval-2018 Task 10: Capturing Discriminative Attributes. 732-740 - Sunny Lai, Kwong-Sak Leung, Yee Leung:

SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-Machine-Based Method for Detecting Semantic Difference using Taxonomy and Word Embedding Features. 741-746 - Simon Ostermann, Michael Roth, Ashutosh Modi, Stefan Thater, Manfred Pinkal:

SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge. 747-757 - Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, Jingming Liu:

Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense Machine Comprehension. 758-762 - Ivan Habernal, Henning Wachsmuth

, Iryna Gurevych, Benno Stein:
SemEval-2018 Task 12: The Argument Reasoning Comprehension Task. 763-772 - Hongseok Choi

, Hyunju Lee:
GIST at SemEval-2018 Task 12: A network transferring inference knowledge to Argument Reasoning Comprehension task. 773-777 - Tyler Renslow, Günter Neumann:

LightRel at SemEval-2018 Task 7: Lightweight and Fast Relation Classification. 778-782 - Dushyanta Dhyani:

OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers Using Piecewise Convolutional Neural Networks. 783-787 - Yi Luan, Mari Ostendorf, Hannaneh Hajishirzi:

The UWNLP system at SemEval-2018 Task 7: Neural Relation Extraction Model with Selectively Incorporated Concept Embeddings. 788-792 - Víctor Suárez-Paniagua, Isabel Segura-Bedmar

, Akiko Aizawa:
UC3M-NII Team at SemEval-2018 Task 7: Semantic Relation Classification in Scientific Papers via Convolutional Neural Network. 793-797 - Di Jin, Franck Dernoncourt, Elena Sergeeva, Matthew B. A. McDermott, Geeticka Chauhan:

MIT-MEDG at SemEval-2018 Task 7: Semantic Relation Classification via Convolution Neural Network. 798-804 - Farhad Nooralahzadeh

, Lilja Øvrelid, Jan Tore Lønning:
SIRIUS-LTG-UiO at SemEval-2018 Task 7: Convolutional Neural Networks with Shortest Dependency Paths for Semantic Relation Extraction and Classification in Scientific Papers. 805-810 - Zhongbo Yin, Zhunchen Luo, Wei Luo, Mao Bin, Changhai Tian, Yuming Ye, Shuai Wu:

IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional Pipeline Method for Relation Classification. 811-815 - Mariana Neves, Daniel Butzke, Gilbert Schönfelder, Barbara Grune:

Bf3R at SemEval-2018 Task 7: Evaluating Two Relation Extraction Tools for Finding Semantic Relations in Biomedical Abstracts. 816-820 - Andrey Sysoev, Vladimir Mayorov:

Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classification in Scientific Papers. 821-825 - Thorsten Keiper, Zhonghao Lyu, Sara Pooladzadeh, Yuan Xu, Jingyi Zhang, Anne Lauscher

, Simone Paolo Ponzetto
:
UniMa at SemEval-2018 Task 7: Semantic Relation Extraction and Classification from Scientific Publications. 826-830 - Sean MacAvaney, Luca Soldaini, Arman Cohan

, Nazli Goharian:
GU IRLAB at SemEval-2018 Task 7: Tree-LSTMs for Scientific Relation Classification. 831-835 - Lena Hettinger, Alexander Dallmann, Albin Zehe, Thomas Niebler, Andreas Hotho:

ClaiRE at SemEval-2018 Task 7: Classification of Relations using Embeddings. 836-841 - Martin Gluhak, Maria Pia di Buono, Abbas Akkasi, Jan Snajder:

TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts. 842-847 - Mauro Dragoni:

NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a Neural Network Model. 848-852 - Darshini Mahendran, Chathurika Brahmana, Bridget T. McInnes:

SciREL at SemEval-2018 Task 7: A System for Semantic Relation Extraction and Classification. 853-857 - Biswanath Barik, Utpal Kumar Sikdar, Björn Gambäck:

NTNU at SemEval-2018 Task 7: Classifier Ensembling for Semantic Relation Identification and Classification in Scientific Papers. 858-862 - Bhanu Pratap

, Daniel Shank, Oladipo Ositelu, Byron Galbraith:
Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional Neural Networks. 863-867 - Manikandan R, Krishna Madgula, Snehanshu Saha:

TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using Convolutional Neural Network and Conditional Random Fields. 868-873 - Mingming Fu, Xuemin Zhao, Yonghong Yan:

HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence Labeling from Cybersecurity Reports. 874-877 - Ankur Padia, Arpita Roy, Taneeya Satyapanich, Francis Ferraro, Shimei Pan, Youngja Park, Anupam Joshi, Tim Finin:

UMBC at SemEval-2018 Task 8: Understanding Text about Malware. 878-884 - Pablo Loyola, Kugamoorthy Gajananan, Yuji Watanabe, Fumiko Satoh:

Villani at SemEval-2018 Task 8: Semantic Extraction from Cybersecurity Reports using Representation Learning. 885-889 - Utpal Kumar Sikdar, Biswanath Barik, Björn Gambäck:

Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text Using Conditional Random Fields and Naïve Bayes Classifiers. 890-893 - Chris Brew:

Digital Operatives at SemEval-2018 Task 8: Using dependency features for malware NLP. 894-897 - Mihaela Plamada-Onofrei, Ionut Hulub, Diana Trandabat, Daniela Gîfu:

Apollo at SemEval-2018 Task 9: Detecting Hypernymy Relations Using Syntactic Dependencies. 898-902 - Zhuosheng Zhang

, Jiangtong Li
, Hai Zhao, Bingjie Tang:
SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Embeddings. 903-908 - Wei Qiu, Mosha Chen, Linlin Li, Luo Si:

NLP_HZ at SemEval-2018 Task 9: a Nearest Neighbor Approach. 909-913 - Arshia Zernab Hassan, Manikya Swathi Vallabhajosyula, Ted Pedersen:

UMDuluth-CS8761 at SemEval-2018 Task9: Hypernym Discovery using Hearst Patterns, Co-occurrence frequencies and Word Embeddings. 914-918 - Ahmad Issa Alaa Aldine, Mounira Harzallah, Giuseppe Berio, Nicolas Béchet, Ahmad Faour:

EXPR at SemEval-2018 Task 9: A Combined Approach for Hypernym Discovery. 919-923 - Alfredo Maldonado, Filip Klubicka:

ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora. 924-927 - Gábor Berend, Márton Makrai, Peter Földiák:

300-sparsans at SemEval-2018 Task 9: Hypernymy as interaction of sparse attributes. 928-934 - Tomás Brychcín, Tomás Hercig, Josef Steinberger, Michal Konkol:

UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word Distributions. 935-939 - Pia Sommerauer

, Antske Fokkens
, Piek Vossen
:
Meaning_space at SemEval-2018 Task 10: Combining explicitly encoded knowledge with information extracted from word embeddings. 940-946 - Mohammed Attia, Younes Samih, Manaal Faruqui, Wolfgang Maier:

GHH at SemEval-2018 Task 10: Discovering Discriminative Attributes in Distributional Semantics. 947-952 - Pablo Gamallo:

CitiusNLP at SemEval-2018 Task 10: The Use of Transparent Distributional Models and Salient Contexts to Discriminate Word Attributes. 953-957 - Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Yongfeng Huang:

THU_NGN at SemEval-2018 Task 10: Capturing Discriminative Attributes with MLP-CNN model. 958-962 - Bogdan Dumitru, Alina Maria Ciobanu, Liviu P. Dinu:

ALB at SemEval-2018 Task 10: A System for Capturing Discriminative Attributes. 963-967 - José-Ángel González, Lluís-F. Hurtado, Encarna Segarra, Ferran Pla:

ELiRF-UPV at SemEval-2018 Task 10: Capturing Discriminative Attributes with Knowledge Graphs and Wikipedia. 968-971 - Shiva Taslimipoor, Omid Rohanian, Le An Ha, Gloria Corpas Pastor

, Ruslan Mitkov:
Wolves at SemEval-2018 Task 10: Semantic Discrimination based on Knowledge and Association. 972-976 - Ignacio Arroyo-Fernández, Iván Vladimir Meza Ruíz, Carlos-Francisco Méndez-Cruz

:
UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative Attribute Identification in Neural Word Embedding Cones. 977-984 - Robyn Speer

, Joanna Lowry-Duda:
Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text Corpora and Relational Knowledge. 985-989 - Enrico Santus, Chris Biemann, Emmanuele Chersoni:

BomJi at SemEval-2018 Task 10: Combining Vector-, Pattern- and Graph-based Information to Identify Discriminative Attributes. 990-994 - Maxim Grishin:

Igevorse at SemEval-2018 Task 10: Exploring an Impact of Word Embeddings Concatenation for Capturing Discriminative Attributes. 995-998 - Yunxiao Zhou, Man Lan, Yuanbin Wu:

ECNU at SemEval-2018 Task 10: Evaluating Simple but Effective Features on Machine Learning Methods for Semantic Difference Detection. 999-1002 - Vivek Vinayan, M. Anand Kumar

, Soman K. P:
AmritaNLP at SemEval-2018 Task 10: Capturing discriminative attributes using convolution neural network over global vector representation. 1003-1007 - Artur Kulmizev, Mostafa Abdou, Vinit Ravishankar, Malvina Nissim:

Discriminator at SemEval-2018 Task 10: Minimally Supervised Discrimination. 1008-1012 - Milton King, Ali Hakimi Parizi, Paul Cook:

UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative attributes. 1013-1016 - Rui Mao, Guanyi Chen, Ruizhe Li

, Chenghua Lin:
ABDN at SemEval-2018 Task 10: Recognising Discriminative Attributes using Context Embeddings and WordNet. 1017-1021 - Alexander Zhang, Marine Carpuat:

UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes? 1022-1026 - Yow-Ting Shiue, Hen-Hsen Huang, Hsin-Hsi Chen:

NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic Differences by Integrating Distributional Information and Expert Knowledge. 1027-1033 - José-Ángel González, Lluís-F. Hurtado, Encarna Segarra

, Ferran Pla:
ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge. 1034-1037 - Qingxun Liu, Yao Hongdou, Zhou Xaobing, Xie Ge:

YNU_AI1799 at SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge of Different model ensemble. 1038-1042 - Peng Ding

, Xiaobing Zhou:
YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM Models for Machine Comprehension. 1043-1047 - Yixuan Sheng, Man Lan, Yuanbin Wu:

ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task. 1048-1052 - Zhengping Jiang, Qi Sun:

CSReader at SemEval-2018 Task 11: Multiple Choice Question Answering as Textual Entailment. 1053-1057 - Hang Yuan, Jin Wang, Xuejie Zhang:

YNU-HPCC at Semeval-2018 Task 11: Using an Attention-based CNN-LSTM for Machine Comprehension using Commonsense Knowledge. 1058-1062 - Jiangnan Xia:

Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method for Machine Comprehension Task. 1063-1067 - Sofia Reznikova, Leon Derczynski:

IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source. 1068-1072 - Yongbin Li, Xiaobing Zhou:

Lyb3b at SemEval-2018 Task 11: Machine Comprehension Task using Deep Learning Models. 1073-1077 - Elizabeth M. Merkhofer, John C. Henderson

, David Bloom, Laura Strickhart, Guido Zarrella:
MITRE at SemEval-2018 Task 11: Commonsense Reasoning without Commonsense Knowledge. 1078-1082 - Taeuk Kim, Jihun Choi, Sang-goo Lee:

SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors for Argument Reasoning Comprehension. 1083-1088 - Wenjie Liu, Chengjie Sun, Lei Lin, Bingquan Liu:

ITNLP-ARC at SemEval-2018 Task 12: Argument Reasoning Comprehension with Attention. 1089-1093 - Junfeng Tian, Man Lan, Yuanbin Wu:

ECNU at SemEval-2018 Task 12: An End-to-End Attention-based Neural Network for the Argument Reasoning Comprehension Task. 1094-1098 - Tim Niven, Hung-Yu Kao:

NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for Argument Comprehension. 1099-1103 - Meiqian Zhao, Chunhua Liu, Lu Liu, Yan Zhao, Dong Yu:

BLCU_NLP at SemEval-2018 Task 12: An Ensemble Model for Argument Reasoning Based on Hierarchical Attention. 1104-1108 - Quanlei Liao, Xutao Yang, Jin Wang, Xuejie Zhang:

YNU-HPCC at SemEval-2018 Task 12: The Argument Reasoning Comprehension Task Using a Bi-directional LSTM with Attention Model. 1109-1113 - Matthias Liebeck, Andreas Funke

, Stefan Conrad:
HHU at SemEval-2018 Task 12: Analyzing an Ensemble-based Deep Learning Approach for the Argument Mining Task of Choosing the Correct Warrant. 1114-1119 - Peng Ding

, Xiaobing Zhou:
YNU Deep at SemEval-2018 Task 12: A BiLSTM Model with Neural Attention for Argument Reasoning Comprehension. 1120-1123 - Anirudh Joshi, Tim Baldwin, Richard O. Sinnott, Cécile Paris:

UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs, Siamese Networks and Semantic Representations with Synonym Fuzzing. 1124-1128 - Guobin Sui, Wen-Han Chao, Zhunchen Luo:

Joker at SemEval-2018 Task 12: The Argument Reasoning Comprehension with Neural Attention. 1129-1132 - Ana Brassard, Tin Kuculo, Filip Boltuzic, Jan Snajder:

TakeLab at SemEval-2018 Task12: Argument Reasoning Comprehension with Skip-Thought Vectors. 1133-1136 - Yongbin Li, Xiaobing Zhou:

Lyb3b at SemEval-2018 Task 12: Ensemble-based Deep Learning Models for Argument Reasoning Comprehension Task. 1137-1141 - Zhimin Chen, Wei Song, Lizhen Liu:

TRANSRW at SemEval-2018 Task 12: Transforming Semantic Representations for Argument Reasoning Comprehension. 1142-1145

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














