


default search action
*SEM@NAACL-HLT 2013: Atlanta, Georgia, USA
- Mona T. Diab, Timothy Baldwin, Marco Baroni:

Proceedings of the Second Joint Conference on Lexical and Computational Semantics, *SEM 2013, June 13-14, 2013, Atlanta, Georgia, USA. Association for Computational Linguistics 2013, ISBN 978-1-937284-48-0 - Edward Grefenstette:

Towards a Formal Distributional Semantics: Simulating Logical Calculi with Tensors. 1-10 - Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, Raymond J. Mooney:

Montague Meets Markov: Deep Semantics with Probabilistic Logical Form. 11-21 - Hui Shen, Razvan C. Bunescu, Rada Mihalcea:

Coarse to Fine Grained Sense Disambiguation in Wikipedia. 22-31 - Eneko Agirre, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei Guo:

*SEM 2013 shared task: Semantic Textual Similarity. 32-43 - Lushan Han, Abhay L. Kashyap, Tim Finin, James Mayfield, Jonathan Weese:

UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems. 44-52 - Aliaksei Severyn, Massimo Nicosia, Alessandro Moschitti:

iKernels-Core: Tree Kernel Learning for Textual Similarity. 53-58 - Danilo Croce, Valerio Storch, Roberto Basili:

UNITOR-CORE_TYPED: Combining Text Similarity and Semantic Filters through SV Regression. 59-65 - Erwin Marsi, Hans Moen, Lars Bungum, Gleb Sizov, Björn Gambäck, André Lynum:

NTNU-CORE: Combining strong features for semantic similarity. 66-73 - Sai Wang, Ru Li, Ruibo Wang, Zhiqiang Wang, Xia Zhang:

SXUCFN-Core: STS Models Integrating FrameNet Parsing Information. 74-79 - Judita Preiss, Mark Stevenson:

Distinguishing Common and Proper Nouns. 80-84 - Tamara Polajnar, Laura Rimell, Douwe Kiela:

UCAM-CORE: Incorporating structured distributional similarity into STS. 85-89 - Jian Xu, Qin Lu:

PolyUCOMP-CORE_TYPED: Computing Semantic Textual Similarity using Overlapped Senses. 90-95 - Michael Heilman, Nitin Madnani:

HENRY-CORE: Domain Adaptation and Stacking for Text Similarity. 96-102 - Nikolaos Malandrakis, Elias Iosif, Vassiliki Prokopi, Alexandros Potamianos, Shrikanth S. Narayanan:

DeepPurple: Lexical, String and Affective Feature Fusion for Sentence-Level Semantic Similarity Estimation. 103-108 - Alexander Chavez, Héctor Dávila, Yoan Gutiérrez, Armando Collazo, José Ignacio Abreu, Antonio Fernández Orquín, Andrés Montoyo, Rafael Muñoz:

UMCC_DLSI: Textual Similarity based on Lexical-Semantic features. 109-118 - Lubomír Otrusina, Pavel Smrz:

BUT-TYPED: Using domain knowledge for computing typed similarity. 119-123 - Tiantian Zhu, Man Lan:

ECNUCS: Measuring Short Text Semantic Equivalence Using Multiple Similarity Measurements. 124-131 - Eneko Agirre, Nikolaos Aletras, Aitor Gonzalez-Agirre, German Rigau, Mark Stevenson:

UBC_UOS-TYPED: Regression for typed-similarity. 132-137 - Hermann Ziak, Roman Kern:

KnCe2013-CORE: Semantic Text Similarity by use of Knowledge Bases. 138-142 - Alberto Barrón-Cedeño, Lluís Màrquez, María Fuentes Fort, Horacio Rodríguez, Jordi Turmo:

UPC-CORE: What Can Machine Translation Evaluation Metrics and Wikipedia Do for Estimating Semantic Textual Similarity? 143-147 - Stephen T. Wu, Dongqing Zhu, Ben Carterette, Hongfang Liu:

MayoClinicNLP-CORE: Semantic representations for textual similarity. 148-154 - Eric Yeh:

SRIUBC-Core: Multiword Soft Similarity Models for Textual Similarity. 155-161 - Davide Buscaldi, Joseph Le Roux, Jorge J. García Flores, Adrian Popescu:

LIPN-CORE: Semantic Text Similarity using n-grams, WordNet, Syntactic Analysis, ESA and Information Retrieval based Features. 162-168 - Annalina Caputo, Pierpaolo Basile, Giovanni Semeraro:

UNIBA-CORE: Combining Strategies for Semantic Textual Similarity. 169-175 - Md. Arafat Sultan, Steven Bethard, Tamara Sumner:

DLS$@$CU-CORE: A Simple Machine Learning Model of Semantic Textual Similarity. 176-180 - Paul Greiner, Thomas Proisl, Stefan Evert, Besim Kabashi:

KLUE-CORE: A regression model of semantic textual similarity. 181-186 - Sara Noeman:

IBM_EG-CORE: Comparing multiple Lexical and NE matching features in measuring Semantic Textual similarity. 187-193 - Sergio Jiménez, Claudia Jeanneth Becerra, Alexander F. Gelbukh:

SOFTCARDINALITY-CORE: Improving Text Overlap with Distributional Measures for Semantic Textual Similarity. 194-201 - Spandana Gella, Bahar Salehi, Marco Lui, Karl Grieser, Paul Cook, Timothy Baldwin:

UniMelb_NLP-CORE: Integrating predictions from multiple domains and feature sets for estimating semantic textual similarity. 207-215 - Avishek Dan, Pushpak Bhattacharyya:

CFILT-CORE: Semantic Textual Similarity using Universal Networking Language. 216-220 - Carmen Banea, Yoonjung Choi, Lingjia Deng, Samer Hassan, Michael Mohler, Bishan Yang, Claire Cardie, Rada Mihalcea, Janyce Wiebe:

CPN-CORE: A Text Semantic Similarity System Infused with Opinion Knowledge. 221-228 - Fernando Sánchez-Vega, Manuel Montes-y-Gómez, Paolo Rosso, Luis Villaseñor Pineda:

INAOE_UPV-CORE: Extracting Word Associations from Document Corpora to estimate Semantic Textual Similarity. 229-233 - Ergun Biçici, Josef van Genabith:

CNGL-CORE: Referential Translation Machines for Measuring Semantic Similarity. 234-240 - Yoav Goldberg, Jon Orwant:

A Dataset of Syntactic-Ngrams over Time from a Very Large Corpus of English Books. 241-247 - Spandana Gella, Paul Cook, Bo Han:

Unsupervised Word Usage Similarity in Social Media Texts. 248-253 - David A. Forsyth:

More Words and Bigger Pictures. 254 - Sabine Schulte im Walde, Stefan Müller, Stephen Roller:

Exploring Vector Space Models to Predict the Compositionality of German Noun-Noun Compounds. 255-265 - Bahar Salehi, Paul Cook:

Predicting the Compositionality of Multiword Expressions Using Translations in Multiple Languages. 266-275 - Ekaterina Shutova:

Metaphor Identification as Interpretation. 276-285 - Andrea Horbach, Alexis Palmer, Manfred Pinkal:

Using the text to evaluate short answers for reading comprehension exercises. 286-295 - H. Andrew Schwartz, Johannes C. Eichstaedt, Eduardo Blanco, Lukasz Dziurzynski, Margaret L. Kern, Stephanie Ramones, Martin E. P. Seligman, Lyle H. Ungar:

Choosing the Right Words: Characterizing and Reducing Error of the Word Count Approach. 296-305 - Michael Roth, Anette Frank:

Automatically Identifying Implicit Arguments to Improve Argument Linking and Coherence Modeling. 306-316 - Mikhail Kozhevnikov, Ivan Titov:

Bootstrapping Semantic Role Labelers from Parallel Data. 317-327 - Qingqing Cai, Alexander Yates:

Semantic Parsing Freebase: Towards Open-domain Semantic Parsing. 328-338

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














