


default search action
ACM SIGSAM Bulletin, Volume 38
Volume 38, Number 1, March 2004
- John Michael McNamee:

A comparison of methods for accurate summation. 1-7
- Martine Ceberio, Vladik Kreinovich:

Greedy algorithms for optimizing multivariate Horner schemes. 8-15
- Gene Cooperman:

The TOP-C parallel model and symbolic algebra. 16-17 - John Abbott:

CoCoA: a laboratory for computations in commutative algebra. 18-19 - Michael McGettrick:

Online Gröbner Basis [OGB]. 19-21 - Annick Dhooge, Willy Govaerts, Yuri A. Kuznetsov

:
MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. 21-22 - Christopher W. Brown:

QEPCAD B: a system for computing with semi-algebraic sets via cylindrical algebraic decomposition. 23-24 - Joris van der Hoeven:

GNU TeXmacs. 24-25 - Manfred Minimair

:
MR: Macaulay Resultant package for Maple. 26-27 - Robert H. Lewis:

Using Fermat to solve large polynomial and matrix problems. 27-28 - Zhonggang Zeng:

A Matlab package computing polynomial roots and multiplicities. 28-29
Volume 38, Number 2, June 2004
- Clemens Ballarin, Manuel Kauers:

Solving parametric linear systems: an experiment with constraint algebraic programming. 33-46
- William M. Farmer:

MKM: a new interdisciplinary field of research. 47-52
- Laureano González-Vega, Tomás Recio:

Review of "Computational Commutative Algebra I by Martin Kreuzer and Lorenzo Robbiano", Springer Verlag, 2000, ISBN 3-540-67733-X. 53-55
Volume 38, Number 3, September 2004
- David J. Jeffrey, Arthur C. Norman:

Not seeing the roots for the branches: multivalued functions in computer algebra. 57-66 - Jan De Beule

, Albert Hoogewijs, Leo Storme:
On the size of minimal blocking sets of Q(4; q), for q = 5, 7. 67-84
- Tateaki Sasaki:

A theorem for separating close roots of a polynomial and its derivatives. 85-92
- Ilias S. Kotsireas, Emil J. Volcheck:

ANTS VI: algorithmic number theory symposium poster abstracts. 93-107
Volume 38, Number 4, December 2004
- Joshua Holden

:
Distribution of the error in estimated numbers of fixed points of the discrete logarithm. 111-118 - Kosaku Nagasaka:

Towards more accurate separation bounds of empirical polynomials. 119-129

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














