


default search action
Genetic Programming and Evolvable Machines, Volume 19
Volume 19, Numbers 1-2, June 2018
- Lee Spector

:
Editorial introduction. 1-2 - Lee Spector

:
Acknowledgment to reviewers. 3-4 - Su Nguyen

, Yi Mei
, Mengjie Zhang:
Guest editorial: special issue on automated design and adaptation of heuristics for scheduling and combinatorial optimisation. 5-7 - Marko Durasevic

, Domagoj Jakobovic
:
Evolving dispatching rules for optimising many-objective criteria in the unrelated machines environment. 9-51 - Marko Durasevic

, Domagoj Jakobovic
:
Comparison of ensemble learning methods for creating ensembles of dispatching rules for the unrelated machines environment. 53-92 - Rinde R. S. van Lon, Jürgen Branke

, Tom Holvoet
:
Optimizing agents with genetic programming: an evaluation of hyper-heuristics in dynamic real-time logistics. 93-120 - Mohamed El Yafrani

, Marcella S. R. Martins
, Markus Wagner
, Belaïd Ahiod, Myriam Regattieri Delgado
, Ricardo Lüders
:
A hyperheuristic approach based on low-level heuristics for the travelling thief problem. 121-150 - Juan-Carlos Gomez

, Hugo Terashima-Marín
:
Evolutionary hyper-heuristics for tackling bi-objective 2D bin packing problems. 151-181 - Ayad Turky

, Nasser R. Sabar, Andy Song
:
Cooperative evolutionary heterogeneous simulated annealing algorithm for google machine reassignment problem. 183-210 - Oscar Garnica

, Kyrre Glette, Jim Tørresen:
Comparing three online evolvable hardware implementations of a classification system. 211-234 - Jack Mario Mingo, Ricardo Aler

:
Evolution of shared grammars for describing simulated spatial scenes with grammatical evolution. 235-270 - David Moskowitz

:
Implementing the template method pattern in genetic programming for improved time series prediction. 271-299 - Christine Zarges:

Hod Lipson and Melba Kurman: Driverless: intelligent cars and the road ahead - The MIT Press, 2016, pp 312, ISBN: 9780262035224. 301-303 - Jeff Heaton

:
Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning - The MIT Press, 2016, 800 pp, ISBN: 0262035618. 305-307 - Ofer M. Shir:

Christian Blum and Günther R. Raidl: Hybrid metaheuristics - powerful tools for optimization - Springer International Publishing, Switzerland, 2016, 157 pp, ISBN: 978-3-319-30882-1. 309-311
Volume 19, Number 3, September 2018
- Nadia Boukhelifa, Evelyne Lutton

:
Guest editorial: Special issue on genetic programming, evolutionary computation and visualization. 313-315 - Nadarajen Veerapen

, Gabriela Ochoa
:
Visualising the global structure of search landscapes: genetic improvement as a case study. 317-349 - Eric Medvet

, Marco Virgolin, Mauro Castelli
, Peter A. N. Bosman, Ivo Gonçalves
, Tea Tusar
:
Unveiling evolutionary algorithm representation with DU maps. 351-389 - Cameron C. Gray

, Shatha F. Al-Maliki
, Franck Patrick Vidal
:
Data exploration in evolutionary reconstruction of PET images. 391-419 - David J. Walker

:
Visualisation with treemaps and sunbursts in many-objective optimisation. 421-452 - Peter Karpov, Giovanni Squillero

, Alberto Paolo Tonda
:
VALIS: an evolutionary classification algorithm. 453-471
Volume 19, Number 4, December 2018
- Iztok Fajfar

, Árpád Bürmen, Janez Puhan:
Grammatical evolution as a hyper-heuristic to evolve deterministic real-valued optimization algorithms. 473-504 - Azam Shirali

, Javidan Kazemi Kordestani
, Mohammad Reza Meybodi:
Self-adaptive multi-population genetic algorithms for dynamic resource allocation in shared hosting platforms. 505-534 - Tiantian Dou, Peter I. Rockett

:
Comparison of semantic-based local search methods for multiobjective genetic programming. 535-563 - Keith L. Downing:

Alain Pétrowski and Sana Ben-Hamida: Evolutionary Algorithms - John Wiley and Sons, Inc., Hoboken, New Jersey, USA, 2017, ISBN-13: 978-1848218048, ISBN-10: 1848218044. 565-566 - Spyridon Samothrakis:

Kathryn E. Merrick: Computational models of motivation for game-playing agents - Springer, 2016, 213 pp, ISBN: 978-3-319-33457-8. 567-568 - Analía Amandi

:
Ryan J. Urbanowicz, and Will N. Browne: Introduction to learning classifier systems - Springer, 2017, 123 pp, ISBN 978-3-662-55007-6. 569-570

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














