


default search action
Journal of Machine Learning Research, Volume 6
Volume 6, January 2005
- Dmitry Rusakov, Dan Geiger:

Asymptotic Model Selection for Naive Bayesian Networks. 1-35 - Hyunsoo Kim, Peg Howland, Haesun Park:

Dimension Reduction in Text Classification with Support Vector Machines. 37-53 - André Elisseeff, Theodoros Evgeniou, Massimiliano Pontil:

Stability of Randomized Learning Algorithms. 55-79 - Gal Elidan, Nir Friedman:

Learning Hidden Variable Networks: The Information Bottleneck Approach. 81-127 - John D. Lafferty, Guy Lebanon:

Diffusion Kernels on Statistical Manifolds. 129-163 - Gal Chechik, Amir Globerson, Naftali Tishby, Yair Weiss:

Information Bottleneck for Gaussian Variables. 165-188
Volume 6, February 2005
- Günther Eibl, Karl Peter Pfeiffer:

Multiclass Boosting for Weak Classifiers. 189-210 - Ingo Steinwart, Don R. Hush, Clint Scovel:

A Classification Framework for Anomaly Detection. 211-232
Volume 6, March 2005
- Jaakko Särelä, Harri Valpola:

Denoising Source Separation. 233-272 - John Langford:

Tutorial on Practical Prediction Theory for Classification. 273-306 - Savina Andonova Jaeger:

Generalization Bounds and Complexities Based on Sparsity and Clustering for Convex Combinations of Functions from Random Classes. 307-340 - S. Sathiya Keerthi, Dennis DeCoste:

A Modified Finite Newton Method for Fast Solution of Large Scale Linear SVMs. 341-361
Volume 6, April 2005
- Ivor W. Tsang

, James T. Kwok, Pak-Ming Cheung:
Core Vector Machines: Fast SVM Training on Very Large Data Sets. 363-392 - Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled

, Dan Roth:
Generalization Bounds for the Area Under the ROC Curve. 393-425 - Mario Marchand, Marina Sokolova:

Learning with Decision Lists of Data-Dependent Features. 427-451 - Motoaki Kawanabe, Klaus-Robert Müller:

Estimating Functions for Blind Separation When Sources Have Variance Dependencies. 453-482 - Jieping Ye:

Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems. 483-502 - Damien Ernst, Pierre Geurts, Louis Wehenkel:

Tree-Based Batch Mode Reinforcement Learning. 503-556 - Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman:

Learning Module Networks. 557-588 - Tong Luo, Kurt Kramer, Dmitry B. Goldgof, Lawrence O. Hall, Scott Samson, Andrew Remsen, Thomas Hopkins:

Active Learning to Recognize Multiple Types of Plankton. 589-613 - Theodoros Evgeniou, Charles A. Micchelli, Massimiliano Pontil:

Learning Multiple Tasks with Kernel Methods. 615-637 - Marcus Hutter, Jan Poland:

Adaptive Online Prediction by Following the Perturbed Leader. 639-660 - John M. Winn, Christopher M. Bishop:

Variational Message Passing. 661-694 - Aapo Hyvärinen:

Estimation of Non-Normalized Statistical Models by Score Matching. 695-709
Volume 6, May 2005
- Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:

Smooth epsiloon-Insensitive Regression by Loss Symmetrization. 711-741 - Simone G. O. Fiori:

Quasi-Geodesic Neural Learning Algorithms Over the Orthogonal Group: A Tutorial. 743-781 - Joseph F. Murray, Gordon F. Hughes, Kenneth Kreutz-Delgado:

Machine Learning Methods for Predicting Failures in Hard Drives: A Multiple-Instance Application. 783-816 - Fabio Aiolli, Alessandro Sperduti:

Multiclass Classification with Multi-Prototype Support Vector Machines. 817-850 - David Wingate, Kevin D. Seppi:

Prioritization Methods for Accelerating MDP Solvers. 851-881 - Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto De Giovannini, Francesca Odone:

Learning from Examples as an Inverse Problem. 883-904 - Alexander T. Ihler, John W. Fisher III, Alan S. Willsky:

Loopy Belief Propagation: Convergence and Effects of Message Errors. 905-936
Volume 6, June 2005
- Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall:

Learning a Mahalanobis Metric from Equivalence Constraints. 937-965 - Andreas Maurer:

Algorithmic Stability and Meta-Learning. 967-994 - Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth:

Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. 995-1018
Volume 6, July 2005
- Wei Chu, Zoubin Ghahramani:

Gaussian Processes for Ordinal Regression. 1019-1041 - Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson:

Learning the Kernel with Hyperkernels. 1043-1071 - Susan A. Murphy:

A Generalization Error for Q-Learning. 1073-1097 - Charles A. Micchelli, Massimiliano Pontil:

Learning the Kernel Function via Regularization. 1099-1125 - Marianthi Markatou, Hong Tian, Shameek Biswas, George Hripcsak:

Analysis of Variance of Cross-Validation Estimators of the Generalization Error. 1127-1168 - Marco Cuturi, Kenji Fukumizu, Jean-Philippe Vert:

Semigroup Kernels on Measures. 1169-1198 - Luís B. Almeida:

Separating a Real-Life Nonlinear Image Mixture. 1199-1229
Volume 6, August 2005
- Evgeny Drukh, Yishay Mansour:

Concentration Bounds for Unigram Language Models. 1231-1264
Volume 6, September 2005
- Guy Shani, David Heckerman, Ronen I. Brafman:

An MDP-Based Recommender System. 1265-1295 - Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald A. DeVore, Vladimir N. Temlyakov:

Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions. 1297-1321 - Juho Rousu, John Shawe-Taylor:

Efficient Computation of Gapped Substring Kernels on Large Alphabets. 1323-1344 - Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Suvrit Sra:

Clustering on the Unit Hypersphere using von Mises-Fisher Distributions. 1345-1382 - Atsuyoshi Nakamura, Michael Schmitt, Niels Schmitt, Hans Ulrich Simon:

Inner Product Spaces for Bayesian Networks. 1383-1403 - Roni Khardon, Rocco A. Servedio:

Maximum Margin Algorithms with Boolean Kernels. 1405-1429 - Marc Boullé:

A Bayes Optimal Approach for Partitioning the Values of Categorical Attributes. 1431-1452 - Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun:

Large Margin Methods for Structured and Interdependent Output Variables. 1453-1484 - Alain Rakotomamonjy, Stéphane Canu:

Frames, Reproducing Kernels, Regularization and Learning. 1485-1515 - Robert G. Cowell:

Local Propagation in Conditional Gaussian Bayesian Networks. 1517-1550 - Hal Daumé III, Daniel Marcu:

A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior. 1551-1577 - Antoine Bordes, Seyda Ertekin, Jason Weston, Léon Bottou:

Fast Kernel Classifiers with Online and Active Learning. 1579-1619 - Gavin Brown, Jeremy L. Wyatt, Peter Tiño:

Managing Diversity in Regression Ensembles. 1621-1650
Volume 6, October 2005
- Josh C. Bongard, Hod Lipson:

Active Coevolutionary Learning of Deterministic Finite Automata. 1651-1678 - Malte Kuss, Carl Edward Rasmussen:

Assessing Approximate Inference for Binary Gaussian Process Classification. 1679-1704 - Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, Joydeep Ghosh:

Clustering with Bregman Divergences. 1705-1749
Volume 6, November 2005
- Georgios Sigletos, Georgios Paliouras, Constantine D. Spyropoulos, Michael Hatzopoulos:

Combining Information Extraction Systems Using Voting and Stacked Generalization. 1751-1782 - Neil D. Lawrence:

Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. 1783-1816 - Rie Kubota Ando, Tong Zhang:

A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data. 1817-1853 - Lior Wolf, Amnon Shashua:

Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight-Based Approach. 1855-1887
Volume 6, December 2005
- Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin:

Working Set Selection Using Second Order Information for Training Support Vector Machines. 1889-1918 - Judy Goldsmith, Robert H. Sloan:

New Horn Revision Algorithms. 1919-1938 - Joaquin Quiñonero Candela, Carl Edward Rasmussen:

A Unifying View of Sparse Approximate Gaussian Process Regression. 1939-1959 - Weng-Keen Wong, Andrew W. Moore, Gregory F. Cooper, Michael M. Wagner:

What's Strange About Recent Events (WSARE): An Algorithm for the Early Detection of Disease Outbreaks. 1961-1998 - Onno Zoeter, Tom Heskes:

Change Point Problems in Linear Dynamical Systems. 1999-2026 - Leila Mohammadi, Sara A. van de Geer:

Asymptotics in Empirical Risk Minimization. 2027-2047 - Asela Gunawardana, William Byrne:

Convergence Theorems for Generalized Alternating Minimization Procedures. 2049-2073 - Arthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, Bernhard Schölkopf:

Kernel Methods for Measuring Independence. 2075-2129 - Gunnar Rätsch, Manfred K. Warmuth:

Efficient Margin Maximizing with Boosting. 2131-2152 - Petros Drineas

, Michael W. Mahoney:
On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning. 2153-2175 - Manfred Opper, Ole Winther:

Expectation Consistent Approximate Inference. 2177-2204

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














