


default search action
Machine Learning, Volume 57, 2004
Volume 57, Number 1-2, October 2004
- Nada Lavrac, Bojan Cestnik, Dragan Gamberger, Peter A. Flach

:
Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned. 115-143 - Nada Lavrac, Hiroshi Motoda, Tom Fawcett:

Editorial: Data Mining Lessons Learned. 5-11 - Nada Lavrac, Hiroshi Motoda, Tom Fawcett

, Robert Holte, Pat Langley, Pieter W. Adriaans:
Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving. 13-34 - Chun-Nan Hsu, Hao-Hsiang Chung, Han-Shen Huang:

Mining Skewed and Sparse Transaction Data for Personalized Shopping Recommendation. 35-59 - Mark-A. Krogel, Tobias Scheffer:

Multi-Relational Learning, Text Mining, and Semi-Supervised Learning for Functional Genomics. 61-81 - Ron Kohavi, Llew Mason, Rajesh Parekh, Zijian Zheng:

Lessons and Challenges from Mining Retail E-Commerce Data. 83-113 - Tom M. Mitchell, Rebecca A. Hutchinson, Radu Stefan Niculescu, Francisco Pereira, Xuerui Wang, Marcel Adam Just

, Sharlene D. Newman:
Learning to Decode Cognitive States from Brain Images. 145-175 - Peter van der Putten, Maarten van Someren:

A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000. 177-195
Volume 57, Number 3, December 2004
- Stan Matwin:

Guest Editorial. 203-204 - Thomas Gärtner

, John W. Lloyd, Peter A. Flach
:
Kernels and Distances for Structured Data. 205-232 - Peter A. Flach

, Nicolas Lachiche
:
Naive Bayesian Classification of Structured Data. 233-269 - Kurt Driessens

, Saso Dzeroski
:
Integrating Guidance into Relational Reinforcement Learning. 271-304 - Jan Struyf, Jan Ramon, Maurice Bruynooghe, Sofie Verbaeten, Hendrik Blockeel

:
Compact Representation of Knowledge Bases in Inductive Logic Programming. 305-333

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














