


default search action
ACM Transactions on Information Systems, Volume 43
Volume 43, Number 1, January 2025
- Weibin Liao
, Yifan Zhu
, Yanyan Li
, Qi Zhang
, Zhonghong Ou
, Xuesong Li
:
RevGNN: Negative Sampling Enhanced Contrastive Graph Learning for Academic Reviewer Recommendation. 1:1-1:26 - Leila Tavakoli
, Johanne R. Trippas
, Hamed Zamani
, Falk Scholer
, Mark Sanderson
:
Online and Offline Evaluation in Search Clarification. 2:1-2:30 - Lei Sang
, Honghao Li
, Yiwen Zhang
, Yi Zhang
, Yun Yang
:
AdaGIN: Adaptive Graph Interaction Network for Click-Through Rate Prediction. 3:1-3:31 - Honghao Li
, Lei Sang
, Yi Zhang
, Xuyun Zhang
, Yiwen Zhang
:
CETN: Contrast-enhanced Through Network for Click-Through Rate Prediction. 4:1-4:34 - Haoran Tang
, Shiqing Wu
, Xueyao Sun
, Jun Zeng
, Guandong Xu
, Qing Li
:
TCGC: Temporal Collaboration-Aware Graph Co-Evolution Learning for Dynamic Recommendation. 5:1-5:27 - Nuo Xu
, Pinghui Wang
, Junzhou Zhao
, Feiyang Sun
, Lin Lan
, Jing Tao
, Li Pan
, Xiaohong Guan
:
Distinguish Confusion in Legal Judgment Prediction via Revised Relation Knowledge. 6:1-6:32 - Xiaoyu Zhang
, Shaoyun Shi
, Yishan Li
, Weizhi Ma
, Peijie Sun
, Min Zhang
:
Feature-Enhanced Neural Collaborative Reasoning for Explainable Recommendation. 7:1-7:33 - Qiyao Peng
, Hongyan Xu
, Yinghui Wang
, Hongtao Liu
, Cuiying Huo
, Wenjun Wang
:
PEPT: Expert Finding Meets Personalized Pre-Training. 8:1-8:26 - Vineeta Anand
, Ashish Kumar Maurya
:
A Survey on Recommender Systems Using Graph Neural Network. 9:1-9:49 - Qiqi Cai
, Jian Cao
, Guandong Xu
, Nengjun Zhu
:
Distributed Recommendation Systems: Survey and Research Directions. 10:1-10:38 - Chen Xu
, Xiaopeng Ye
, Jun Xu
, Xiao Zhang
, Weiran Shen
, Ji-Rong Wen
:
LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops. 11:1-11:29 - Pu Li
, Xiaoyan Yu
, Hao Peng
, Yantuan Xian
, Linqin Wang
, Li Sun
, Jingyun Zhang
, Philip S. Yu
:
Relational Prompt-Based Pre-Trained Language Models for Social Event Detection. 12:1-12:43 - Qizhi Wan
, Changxuan Wan
, Keli Xiao
, Rong Hu
, Dexi Liu
, Guoqiong Liao
, Xiping Liu
, Yuxin Shuai
:
A Multifocal Graph-Based Neural Network Scheme for Topic Event Extraction. 13:1-13:36 - Xuyang Wu
, Ajit Puthenputhussery
, Hongwei Shang
, Changsung Kang
, Yi Fang
:
Meta-Learning to Rank for Sparsely Supervised Queries. 14:1-14:29 - Bobo Li
, Hao Fei
, Fei Li
, Shengqiong Wu
, Lizi Liao
, Yinwei Wei
, Tat-Seng Chua
, Donghong Ji
:
Revisiting Conversation Discourse for Dialogue Disentanglement. 15:1-15:34 - Qi Zhou
, Peng Zhang
, Hansu Gu
, Tun Lu
, Ning Gu
:
Exploring Cross-Site User Modeling without Cross-Site User Identity Linkage: A Case Study of Content Preference Prediction. 16:1-16:28 - Jie Li
, Yongli Ren
, Mark Sanderson
, Ke Deng
:
Explaining Recommendation Fairness from a User/Item Perspective. 17:1-17:30 - Wei Lan
, Guoxian Zhou
, Qingfeng Chen
, Wenguang Wang
, Shirui Pan
, Yi Pan
, Shichao Zhang
:
Contrastive Clustering Learning for Multi-Behavior Recommendation. 18:1-18:23 - Zeyang Zhang
, Xin Wang
, Haibo Chen
, Haoyang Li
, Wenwu Zhu
:
Disentangled Dynamic Graph Attention Network for Out-of-Distribution Sequential Recommendation. 19:1-19:42 - Xi Zhu
, Fake Lin
, Ziwei Zhao
, Tong Xu
, Xiangyu Zhao
, Zikai Yin
, Xueying Li
, Enhong Chen
:
Multi-Behavior Recommendation with Personalized Directed Acyclic Behavior Graphs. 20:1-20:30 - Shiguang Wu
, Xin Xin
, Pengjie Ren
, Zhumin Chen
, Jun Ma
, Maarten de Rijke
, Zhaochun Ren
:
Learning Robust Sequential Recommenders through Confident Soft Labels. 21:1-21:27 - Yi Zhang
, Yiwen Zhang
, Lei Sang
, Victor S. Sheng
:
Simplify to the Limit! Embedding-Less Graph Collaborative Filtering for Recommender Systems. 22:1-22:30 - Guolong Wang, Xun Wu, Xun Tu, Zhaoyuan Liu, Junchi Yan:
Unsupervised Video Moment Retrieval with Knowledge-Based Pseudo-Supervision Construction. 23:1-23:26 - Shijie Wang
, Wenqi Fan
, Xiao-Yong Wei
, Xiaowei Mei
, Shanru Lin
, Qing Li
:
Multi-Agent Attacks for Black-Box Social Recommendations. 24:1-24:26 - Chaochao Chen
, Yizhao Zhang
, Yuyuan Li
, Jun Wang
, Lianyong Qi
, Xiaolong Xu
, Xiaolin Zheng
, Jianwei Yin
:
Post-Training Attribute Unlearning in Recommender Systems. 25:1-25:28 - Shuo Zhang
, Xiangwu Meng, Yujie Zhang
:
Variational Type Graph Autoencoder for Denoising on Event Recommendation. 26:1-26:27
Volume 43, Number 2, March 2025
- Wenjie Wang, Zheng Liu, Fuli Feng, Zhicheng Dou, Qingyao Ai, Grace Hui Yang, Defu Lian, Lu Hou, Aixin Sun, Hamed Zamani, Donald Metzler, Maarten de Rijke:
Pre-Trained Models for Search and Recommendation: Introduction to the Special Issue - Part 1. 27:1-27:6 - Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu, Xiangyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, Weinan Zhang:
How Can Recommender Systems Benefit from Large Language Models: A Survey. 28:1-28:47 - Xin Wang, Hong Chen, Zirui Pan, Yuwei Zhou, Chaoyu Guan, Lifeng Sun, Wenwu Zhu:
Automated Disentangled Sequential Recommendation with Large Language Models. 29:1-29:29 - Hao Wang, Mingjia Yin, Luankang Zhang, Sirui Zhao, Enhong Chen:
MF-GSLAE: A Multi-Factor User Representation Pre-Training Framework for Dual-Target Cross-Domain Recommendation. 30:1-30:28 - Yicheng Di, Hongjian Shi, Xiaoming Wang, Ruhui Ma, Yuan Liu:
Federated Recommender System Based on Diffusion Augmentation and Guided Denoising. 31:1-31:36 - Yingtao Peng, Chen Gao, Yu Zhang, Tangpeng Dan, Xiaoyi Du, Hengliang Luo, Yong Li, Xiaofeng Meng:
Denoising Alignment with Large Language Model for Recommendation. 32:1-32:35 - Dan Zhang, Shaojie Zheng, Yifan Zhu, Huihui Yuan, Jibing Gong, Jie Tang:
MCAP: Low-Pass GNNs with Matrix Completion for Academic Recommendations. 33:1-33:29 - Lixiang Xu, Yusheng Liu, Tong Xu, Enhong Chen, Yuanyan Tang:
Graph Augmentation Empowered Contrastive Learning for Recommendation. 34:1-34:27 - Jiafeng Guo, Yinqiong Cai, Keping Bi, Yixing Fan, Wei Chen, Ruqing Zhang, Xueqi Cheng:
CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval. 35:1-35:25 - Xu Zhang, Zexu Lin, Xiaoyu Hu, Jianlei Wang, Wenpeng Lu, Deyu Zhou:
SECON: Maintaining Semantic Consistency in Data Augmentation for Code Search. 36:1-36:26 - Hongfei Ge, Yuanchun Jiang, Jianshan Sun, Kun Yuan, Yezheng Liu:
LLM-Enhanced Composed Image Retrieval: An Intent Uncertainty-Aware Linguistic-Visual Dual Channel Matching Model. 37:1-37:30 - Parastoo Jafarzadeh, Faezeh Ensan, Mahdiyar Ali Akbar Alavi, Fattane Zarrinkalam:
A Knowledge Graph Embedding Model for Answering Factoid Entity Questions. 38:1-38:27 - Xinze Li, Hanbin Wang, Zhenghao Liu, Shi Yu, Shuo Wang, Yukun Yan, Yukai Fu, Yu Gu, Ge Yu:
Building a Coding Assistant via the Retrieval-Augmented Language Model. 39:1-39:25 - Yuren Mao, Xuemei Dong, Wenyi Xu, Yunjun Gao, Bin Wei, Ying Zhang:
FIT-RAG: Black-Box RAG with Factual Information and Token Reduction. 40:1-40:27 - Yuanjie Lyu, Zhiyu Li, Simin Niu, Feiyu Xiong, Bo Tang, Wenjin Wang, Hao Wu, Huanyong Liu, Tong Xu, Enhong Chen:
CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models. 41:1-41:32
- Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, Ting Liu:
A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions. 42:1-42:55 - Marialena Bevilacqua, Kezia Oketch, Ruiyang Qin, Will Stamey, Xinyuan Zhang, Yi Gan, Kai Yang, Ahmed Abbasi:
When Automated Assessment Meets Automated Content Generation: Examining Text Quality in the Era of GPTs. 43:1-43:36 - Fan Liu, Yaqi Liu, Huilin Chen, Zhiyong Cheng, Liqiang Nie, Mohan S. Kankanhalli:
Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models. 44:1-44:26 - Washington Cunha, Alejandro Moreo Fernández, Andrea Esuli, Fabrizio Sebastiani, Leonardo Rocha, Marcos André Gonçalves:
A Noise-Oriented and Redundancy-Aware Instance Selection Framework. 45:1-45:33 - Ying Sun, Yang Ji, Hengshu Zhu, Fuzhen Zhuang, Qing He, Hui Xiong:
Market-aware Long-term Job Skill Recommendation with Explainable Deep Reinforcement Learning. 46:1-46:35 - Leping Zhang, Xiao Zhang, Yichao Wang, Xuan Li, Zhenhua Dong, Jun Xu:
Adapting Constrained Markov Decision Process for OCPC Bidding with Delayed Conversions. 47:1-47:29 - Thanh Trung Huynh, Trong Bang Nguyen, Thanh Toan Nguyen, Phi Le Nguyen, Hongzhi Yin, Quoc Viet Hung Nguyen, Thanh Tam Nguyen:
Certified Unlearning for Federated Recommendation. 48:1-48:29 - Yizhou Dang, Yuting Liu, Enneng Yang, Guibing Guo, Linying Jiang, Jianzhe Zhao, Xingwei Wang:
Efficient and Adaptive Recommendation Unlearning: A Guided Filtering Framework to Erase Outdated Preferences. 49:1-49:25 - Wei Wang, Yujie Lin, Pengjie Ren, Zhumin Chen, Tsunenori Mine, Jianli Zhao, Qiang Zhao, Moyan Zhang, Xianye Ben, Yujun Li:
Privacy-Preserving Sequential Recommendation with Collaborative Confusion. 50:1-50:25 - Qin Zhang, Mengqi Zheng, Shangsi Chen, Han Liu, Meng Fang:
Self Data Augmentation for Open Domain Question Answering. 51:1-51:35 - Wei Yuan, Chaoqun Yang, Liang Qu, Quoc Viet Hung Nguyen, Guanhua Ye, Hongzhi Yin:
PTF-FSR: A Parameter Transmission-Free Federated Sequential Recommender System. 52:1-52:24 - Nuo Chen, Jiqun Liu, Hanpei Fang, Yuankai Luo, Tetsuya Sakai, Xiao-Ming Wu:
Decoy Effect in Search Interaction: Understanding User Behavior and Measuring System Vulnerability. 53:1-53:58 - Zekai Qu, Ruobing Xie, Chaojun Xiao, Yuan Yao, Zhiyuan Liu, Fengzong Lian, Zhanhui Kang, Jie Zhou:
Thoroughly Modeling Multi-domain Pre-trained Recommendation as Language. 54:1-54:28 - Lei Wang, Jingsen Zhang, Hao Yang, Zhiyuan Chen, Jiakai Tang, Zeyu Zhang, Xu Chen, Yankai Lin, Hao Sun, Ruihua Song, Xin Zhao, Jun Xu, Zhicheng Dou, Jun Wang, Ji-Rong Wen:
User Behavior Simulation with Large Language Model-based Agents. 55:1-55:37

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.