


default search action
ACM Transactions on Modeling and Computer Simulation, Volume 32
Volume 32, Number 1, January 2022
- Roman Divis

, Antonín Kavicka
:
Reflective Nested Simulations Supporting Optimizations within Sequential Railway Traffic Simulators. 1:1-1:34 - Damián Vicino

, Gabriel A. Wainer
, Olivier Dalle:
Uncertainty on Discrete-Event System Simulation. 2:1-2:27 - Jan Moritz Joseph

, Lennart Bamberg
, Imad Hajjar, Behnam Razi Perjikolaei, Alberto García-Ortiz, Thilo Pionteck:
Ratatoskr: An Open-Source Framework for In-Depth Power, Performance, and Area Analysis and Optimization in 3D NoCs. 3:1-3:21 - Jinghui Zhong

, Dongrui Li, Zhixing Huang
, Chengyu Lu, Wentong Cai:
Data-driven Crowd Modeling Techniques: A Survey. 4:1-4:33 - Seunghan Lee

, Saurabh Jain
, Young-Jun Son
:
A Hierarchical Decision-Making Framework in Social Networks for Efficient Disaster Management. 5:1-5:26 - Oliver Reinhardt

, Tom Warnke, Adelinde M. Uhrmacher:
A Language for Agent-based Discrete-event Modeling and Simulation of Linked Lives. 6:1-6:26 - Romolo Marotta

:
RCR Report of "A Language for Agent-Based Discrete-Event Modeling and Simulation of Linked Lives". 7:1-7:4
Volume 32, Number 2, April 2022
- Philippe J. Giabbanelli, Christopher D. Carothers:

Introduction to the Special Section on PADS 2020. 8:1-8:2 - Vignesh Babu, David M. Nicol:

Mechanisms for Precise Virtual Time Advancement in Network Emulation. 9:1-9:26 - Till Köster, Tom Warnke, Adelinde M. Uhrmacher:

Generating Fast Specialized Simulators for Stochastic Reaction Networks via Partial Evaluation. 10:1-10:25 - Xiaoliang Wu, Bo Zhang, Gong Chen, Dong Jin:

A Scalable Quantum Key Distribution Network Testbed Using Parallel Discrete-Event Simulation. 11:1-11:22 - Niclas Feldkamp

, Sören Bergmann
, Florian Conrad, Steffen Strassburger
:
A Method Using Generative Adversarial Networks for Robustness Optimization. 12:1-12:22
- Minh Vu, Lisong Xu

, Sebastian G. Elbaum, Wei Sun, Kevin Qiao:
Efficient Protocol Testing Under Temporal Uncertain Event Using Discrete-event Network Simulations. 13:1-13:30 - Boualem Djehiche, Henrik Hult, Pierre Nyquist

:
Importance Sampling for a Simple Markovian Intensity Model Using Subsolutions. 14:1-14:25 - Nauman Riaz Chaudhry

, Anastasia Anagnostou, Simon J. E. Taylor
:
A Workflow Architecture for Cloud-based Distributed Simulation. 15:1-15:26
Volume 32, Number 3, July 2022
- Frédéric Goualard

:
Drawing Random Floating-point Numbers from an Interval. 16:1-16:24 - Juan Ungredda

, Michael Pearce, Jürgen Branke
:
Bayesian Optimisation vs. Input Uncertainty Reduction. 17:1-17:26 - Yuanlu Bai, Zhiyuan Huang

, Henry Lam
, Ding Zhao
:
Rare-event Simulation for Neural Network and Random Forest Predictors. 18:1-18:33 - David Blackman

, Sebastiano Vigna
:
A New Test for Hamming-Weight Dependencies. 19:1-19:13 - Xiaoliang Wu

, Dong Jin
:
Replicated Computational Results (RCR) Report for "A New Test for Hamming-Weight Dependencies". 20:1-20:3 - Román Cárdenas

, Kevin Henares
, Patricia Arroba
, José L. Risco-Martín
, Gabriel A. Wainer
:
The DEVStone Metric: Performance Analysis of DEVS Simulation Engines. 21:1-21:20
Volume 32, Number 4, October 2022
- Kailin Ding

, Zhenyu Cui
:
A General Framework to Simulate Diffusions with Discontinuous Coefficients and Local Times. 22:1-22:29 - David R. Jefferson

, Peter D. Barnes Jr.
:
Virtual Time III, Part 1: Unified Virtual Time Synchronization for Parallel Discrete Event Simulation. 23:1-23:29 - David R. Jefferson

, Peter D. Barnes Jr.
:
Virtual Time III, Part 2: Combining Conservative and Optimistic Synchronization. 24:1-24:21 - Saikou Y. Diallo

, Andreas Tolk
:
Introduction to the Special Section on PADS 2021. 25:1-25:2 - Maximilian H. Bremer

, John Bachan
, Cy P. Chan
, Clint Dawson
:
Performance Analysis of Speculative Parallel Adaptive Local Timestepping for Conservation Laws. 26:1-26:30 - Philipp Andelfinger

:
Towards Differentiable Agent-Based Simulation. 27:1-27:26 - Htet Naing

, Wentong Cai
, Nan Hu
, Tiantian Wu
, Liang Yu
:
Dynamic Data-driven Microscopic Traffic Simulation using Jointly Trained Physics-guided Long Short-Term Memory. 28:1-28:27

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














