


default search action
Artificial Intelligence: Foundations, Theory, and Algorithms
2026
- Di Guo, Huaping Liu:

Multi-Modal Robotic Intelligence - An Active Perception Approach. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2026, ISBN 978-981-95-3043-4, pp. 3-209
2024
- Weiran Shen, Pingzhong Tang, Song Zuo:

AI-Driven Mechanism Design. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2024, ISBN 978-981-97-9285-6, pp. 1-130
2023
- Xiaowei Huang, Gaojie Jin, Wenjie Ruan:

Machine Learning Safety. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2023, ISBN 978-981-19-6813-6, pp. 3-263 - Qionghai Dai, Yue Gao:

Hypergraph Computation. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2023, ISBN 978-981-99-0184-5, pp. 1-244 - Gerhard Paaß, Sven Giesselbach

:
Foundation Models for Natural Language Processing - Pre-trained Language Models Integrating Media. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2023, ISBN 978-3-031-23189-6, pp. 1-419 - Xu Tan:

Neural Text-to-Speech Synthesis. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2023, ISBN 978-981-99-0826-4, pp. 1-185
2022
- Chuan Shi, Xiao Wang, Philip S. Yu:

Heterogeneous Graph Representation Learning and Applications. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2022, ISBN 978-981-16-6165-5, pp. 1-318
2021
- Fabio Cuzzolin:

The Geometry of Uncertainty - The Geometry of Imprecise Probabilities. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2021, ISBN 978-3-030-63152-9, pp. 1-728
2019
- Virginia Dignum:

Responsible Artificial Intelligence - How to Develop and Use AI in a Responsible Way. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2019, ISBN 978-3-030-30370-9, pp. 1-120
2017
- Paula Boddington

:
Towards a Code of Ethics for Artificial Intelligence. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2017, ISBN 978-3-319-60647-7, pp. 1-111
2016
- Stefano Mariani:

Coordination of Complex Sociotechnical Systems - Self-organisation of Knowledge in MoK. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2016, ISBN 978-3-319-47108-2, pp. 1-234 - Christian Blum, Günther R. Raidl:

Hybrid Metaheuristics - Powerful Tools for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2016, ISBN 978-3-319-30882-1, pp. 1-136 - David Bergman, André A. Ciré, Willem-Jan van Hoeve, John N. Hooker:

Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2016, ISBN 978-3-319-42847-5, pp. 1-234 - Audun Jøsang

:
Subjective Logic - A Formalism for Reasoning Under Uncertainty. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2016, ISBN 978-3-319-42335-7, pp. 1-326
2015
- Justyna Petke

:
Bridging Constraint Satisfaction and Boolean Satisfiability. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2015, ISBN 978-3-319-21809-0, pp. 1-103 - Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos:

Feature Selection for High-Dimensional Data. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2015, ISBN 978-3-319-21857-1, pp. 1-132

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














