


default search action
Ensembles in Machine Learning Applications 2011
- Oleg Okun

, Giorgio Valentini, Matteo Ré:
Ensembles in Machine Learning Applications. Studies in Computational Intelligence 373, Springer 2011, ISBN 978-3-642-22909-1 - Raymond S. Smith, Terry Windeatt

:
Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers. 1-20 - Miguel Ángel Bautista, Sergio Escalera

, Xavier Baró
, Oriol Pujol
, Jordi Vitrià
, Petia Radeva
:
On the Design of Low Redundancy Error-Correcting Output Codes. 21-38 - Evgueni N. Smirnov, Matthijs Moed, Georgi I. Nalbantov, Ida G. Sprinkhuizen-Kuyper

:
Minimally-Sized Balanced Decomposition Schemes for Multi-class Classification. 39-58 - Cemre Zor

, Terry Windeatt
, Berrin A. Yanikoglu
:
Bias-Variance Analysis of ECOC and Bagging Using Neural Nets. 59-73 - Benjamin Schowe, Katharina Morik:

Fast-Ensembles of Minimum Redundancy Feature Selection. 75-95 - Rakkrit Duangsoithong

, Terry Windeatt
:
Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers. 97-115 - Houtao Deng, Saylisse Dávila, George C. Runger, Eugene Tuv:

Learning Markov Blankets for Continuous or Discrete Networks via Feature Selection. 117-131 - Stefano Ceccon, David Garway-Heath, David P. Crabb, Allan Tucker:

Ensembles of Bayesian Network Classifiers Using Glaucoma Data and Expertise. 133-150 - Alessandro Rozza

, Gabriele Lombardi, Matteo Re
, Elena Casiraghi
, Giorgio Valentini
, Paola Campadelli:
A Novel Ensemble Technique for Protein Subcellular Location Prediction. 151-167 - Haytham Elghazel, Alex Aussem, Florence Perraud:

Trading-Off Diversity and Accuracy for Optimal Ensemble Tree Selection in Random Forests. 169-179 - Carlos Pardo

, Juan J. Rodríguez Diez
, José-Francisco Díez-Pastor, César Ignacio García-Osorio
:
Random Oracles for Regression Ensembles. 181-199 - Pierluigi Casale, Oriol Pujol

, Petia Radeva
:
Embedding Random Projections in Regularized Gradient Boosting Machines. 201-216 - Giuliano Armano

, Nima Hatami:
An Improved Mixture of Experts Model: Divide and Conquer Using Random Prototypes. 217-231 - Indre Zliobaite

:
Three Data Partitioning Strategies for Building Local Classifiers. 233-250

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














