default search action
Juho Kanniainen
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j21]Farshid Mehrdoust, Idin Noorani, Juho Kanniainen:
Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market. Math. Comput. Simul. 215: 228-269 (2024) - [i22]Henri Hansen, Juho Kanniainen:
Detachment Problem - Application in Prevention of Information Leakage in Stock Markets. CoRR abs/2401.07074 (2024) - 2023
- [j20]Kestutis Baltakys, Margarita Baltakiene, Negar Heidari, Alexandros Iosifidis, Juho Kanniainen:
Predicting the trading behavior of socially connected investors: Graph neural network approach with implications to market surveillance. Expert Syst. Appl. 228: 120285 (2023) - [j19]Jalmari Tuominen, Teemu Koivistoinen, Juho Kanniainen, Niku Oksala, Ari Palomäki, Antti Roine:
Early Warning Software for Emergency Department Crowding. J. Medical Syst. 47(1): 66 (2023) - [j18]Mostafa Shabani, Martin Magris, George Tzagkarakis, Juho Kanniainen, Alexandros Iosifidis:
Predicting the state of synchronization of financial time series using cross recurrence plots. Neural Comput. Appl. 35(25): 18519-18531 (2023) - [j17]Mostafa Shabani, Dat Thanh Tran, Juho Kanniainen, Alexandros Iosifidis:
Augmented bilinear network for incremental multi-stock time-series classification. Pattern Recognit. 141: 109604 (2023) - [c12]Quoc Minh Nguyen, Dat Thanh Tran, Juho Kanniainen, Alexandros Iosifidis, Moncef Gabbouj:
Cryptocurrency Portfolio Optimization by Neural Networks. SSCI 2023: 25-32 - [c11]Zaffar Zaffar, Fahad Sohrab, Juho Kanniainen, Moncef Gabbouj:
Credit Card Fraud Detection with Subspace Learning-based One-Class Classification. SSCI 2023: 407-412 - [i21]Jalmari Tuominen, Teemu Koivistoinen, Juho Kanniainen, Niku Oksala, Ari Palomäki, Antti Roine:
Early Warning Software for Emergency Department Crowding. CoRR abs/2301.09108 (2023) - [i20]Adamantios Ntakaris, Moncef Gabbouj, Juho Kanniainen:
Optimum Output Long Short-Term Memory Cell for High-Frequency Trading Forecasting. CoRR abs/2304.09840 (2023) - [i19]Jalmari Tuominen, Eetu Pulkkinen, Jaakko Peltonen, Juho Kanniainen, Niku Oksala, Ari Palomäki, Antti Roine:
Forecasting Emergency Department Crowding with Advanced Machine Learning Models and Multivariable Input. CoRR abs/2308.16544 (2023) - [i18]Zaffar Zaffar, Fahad Sohrab, Juho Kanniainen, Moncef Gabbouj:
Credit Card Fraud Detection with Subspace Learning-based One-Class Classification. CoRR abs/2309.14880 (2023) - [i17]Quoc Minh Nguyen, Dat Thanh Tran, Juho Kanniainen, Alexandros Iosifidis, Moncef Gabbouj:
Cryptocurrency Portfolio Optimization by Neural Networks. CoRR abs/2310.01148 (2023) - [i16]Anubha Goel, Puneet Pasricha, Juho Kanniainen:
Sparse Index Tracking via Topological Learning. CoRR abs/2310.09578 (2023) - 2022
- [j16]Margarita Baltakiene, Kestutis Baltakys, Juho Kanniainen:
Trade synchronization and social ties in stock markets. EPJ Data Sci. 11(1): 54 (2022) - [c10]Mostafa Shabani, Dat Thanh Tran, Martin Magris, Juho Kanniainen, Alexandros Iosifidis:
Multi-head Temporal Attention-Augmented Bilinear Network for Financial time series prediction. EUSIPCO 2022: 1487-1491 - [i15]Mostafa Shabani, Dat Thanh Tran, Martin Magris, Juho Kanniainen, Alexandros Iosifidis:
Multi-head Temporal Attention-Augmented Bilinear Network for Financial time series prediction. CoRR abs/2201.05459 (2022) - [i14]Dat Thanh Tran, Juho Kanniainen, Alexandros Iosifidis:
How informative is the Order Book Beyond the Best Levels? Machine Learning Perspective. CoRR abs/2203.07922 (2022) - [i13]Mostafa Shabani, Dat Thanh Tran, Juho Kanniainen, Alexandros Iosifidis:
Augmented Bilinear Network for Incremental Multi-Stock Time-Series Classification. CoRR abs/2207.11577 (2022) - 2021
- [j15]Kestutis Baltakys, Hung Le Viet, Juho Kanniainen:
Structure of Investor Networks and Financial Crises. Entropy 23(4): 381 (2021) - [j14]Nikolaos Passalis, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis, Anastasios Tefas:
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization. J. Signal Process. Syst. 93(10): 1235-1251 (2021) - [i12]Dat Thanh Tran, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Bilinear Input Normalization for Neural Networks in Financial Forecasting. CoRR abs/2109.00983 (2021) - 2020
- [j13]Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Using Deep Learning for price prediction by exploiting stationary limit order book features. Appl. Soft Comput. 93: 106401 (2020) - [j12]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data. Pattern Recognit. Lett. 136: 183-189 (2020) - [j11]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Temporal Bag-of-Features Learning for Predicting Mid Price Movements Using High Frequency Limit Order Book Data. IEEE Trans. Emerg. Top. Comput. Intell. 4(6): 774-785 (2020) - [j10]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Deep Adaptive Input Normalization for Time Series Forecasting. IEEE Trans. Neural Networks Learn. Syst. 31(9): 3760-3765 (2020) - [c9]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Adaptive Normalization for Forecasting Limit Order Book Data Using Convolutional Neural Networks. ICASSP 2020: 1713-1717 - [c8]Dat Thanh Tran, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Data Normalization for Bilinear Structures in High-Frequency Financial Time-series. ICPR 2020: 7287-7292 - [i11]Dat Thanh Tran, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Data Normalization for Bilinear Structures in High-Frequency Financial Time-series. CoRR abs/2003.00598 (2020)
2010 – 2019
- 2019
- [j9]Paraskevi Nousi, Avraam Tsantekidis, Nikolaos Passalis, Adamantios Ntakaris, Juho Kanniainen, Anastasios Tefas, Moncef Gabbouj, Alexandros Iosifidis:
Machine Learning for Forecasting Mid-Price Movements Using Limit Order Book Data. IEEE Access 7: 64722-64736 (2019) - [j8]Adamantios Ntakaris, Giorgio Mirone, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Feature Engineering for Mid-Price Prediction With Deep Learning. IEEE Access 7: 82390-82412 (2019) - [j7]Dat Thanh Tran, Alexandros Iosifidis, Juho Kanniainen, Moncef Gabbouj:
Temporal Attention-Augmented Bilinear Network for Financial Time-Series Data Analysis. IEEE Trans. Neural Networks Learn. Syst. 30(5): 1407-1418 (2019) - [c7]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Deep Temporal Logistic Bag-of-features for Forecasting High Frequency Limit Order Book Time Series. ICASSP 2019: 7545-7549 - [i10]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Temporal Logistic Neural Bag-of-Features for Financial Time series Forecasting leveraging Limit Order Book Data. CoRR abs/1901.08280 (2019) - [i9]Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Deep Adaptive Input Normalization for Price Forecasting using Limit Order Book Data. CoRR abs/1902.07892 (2019) - [i8]Dat Thanh Tran, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Data-driven Neural Architecture Learning For Financial Time-series Forecasting. CoRR abs/1903.06751 (2019) - [i7]Adamantios Ntakaris, Giorgio Mirone, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Feature Engineering for Mid-Price Prediction with Deep Learning. CoRR abs/1904.05384 (2019) - [i6]Adamantios Ntakaris, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators. CoRR abs/1907.09452 (2019) - 2018
- [i5]Paraskevi Nousi, Avraam Tsantekidis, Nikolaos Passalis, Adamantios Ntakaris, Juho Kanniainen, Anastasios Tefas, Moncef Gabbouj, Alexandros Iosifidis:
Machine Learning for Forecasting Mid Price Movement using Limit Order Book Data. CoRR abs/1809.07861 (2018) - [i4]Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Using Deep Learning for price prediction by exploiting stationary limit order book features. CoRR abs/1810.09965 (2018) - 2017
- [c6]Nikolaos Passalis, Avraam Tsantekidis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Time-series classification using neural Bag-of-Features. EUSIPCO 2017: 301-305 - [c5]Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Using deep learning to detect price change indications in financial markets. EUSIPCO 2017: 2511-2515 - [c4]Martin Magris, Jiyeong Kim, Esa Räsänen, Juho Kanniainen:
Long-range auto-correlations in limit order book markets: Inter-and cross-event analysis. SSCI 2017: 1-7 - [c3]Dat Thanh Tran, Martin Magris, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Tensor representation in high-frequency financial data for price change prediction. SSCI 2017: 1-7 - [c2]Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Forecasting Stock Prices from the Limit Order Book Using Convolutional Neural Networks. CBI (1) 2017: 7-12 - [i3]Adamantios Ntakaris, Martin Magris, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Benchmark Dataset for Mid-Price Prediction of Limit Order Book data. CoRR abs/1705.03233 (2017) - [i2]Dat Thanh Tran, Martin Magris, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis:
Tensor Representation in High-Frequency Financial Data for Price Change Prediction. CoRR abs/1709.01268 (2017) - [i1]Dat Thanh Tran, Alexandros Iosifidis, Juho Kanniainen, Moncef Gabbouj:
Temporal Attention augmented Bilinear Network for Financial Time-Series Data Analysis. CoRR abs/1712.00975 (2017) - 2015
- [j6]Luca Martino, H. Yang, David Luengo, Juho Kanniainen, Jukka Corander:
A fast universal self-tuned sampler within Gibbs sampling. Digit. Signal Process. 47: 68-83 (2015) - 2013
- [j5]Juliane Müller, Juho Kanniainen, Robert Piché:
Calibration of GARCH models using concurrent accelerated random search. Appl. Math. Comput. 221: 522-534 (2013) - 2011
- [j4]Juho Kanniainen:
Option pricing under joint dynamics of interest rates, dividends, and stock prices. Oper. Res. Lett. 39(4): 260-264 (2011) - [j3]Juho Kanniainen, Saku J. Mäkinen, Robert Piché, Alok Chakrabarti:
Forecasting the Diffusion of Innovation: A Stochastic Bass Model With Log-Normal and Mean-Reverting Error Process. IEEE Trans. Engineering Management 58(2): 228-249 (2011)
2000 – 2009
- 2009
- [j2]Robert Piché, Juho Kanniainen:
Matrix-based numerical modelling of financial differential equations. Int. J. Math. Model. Numer. Optimisation 1(1/2): 88-100 (2009) - [j1]Juho Kanniainen:
Can properly discounted projects follow geometric Brownian motion? Math. Methods Oper. Res. 70(3): 435-450 (2009) - 2007
- [c1]Robert Piché, Juho Kanniainen:
Solving financial differential equations using differentiation matrices. World Congress on Engineering 2007: 1016-1022
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint