default search action
Yeseong Kim
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j7]Jiseung Kim, Hyunsei Lee, Mohsen Imani, Yeseong Kim:
Advancing Hyperdimensional Computing Based on Trainable Encoding and Adaptive Training for Efficient and Accurate Learning. ACM Trans. Design Autom. Electr. Syst. 29(5): 1-25 (2024) - [c61]Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, Sungjin Lee:
NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training in Photo Storage. ASPLOS (3) 2024: 689-707 - [c60]Hyunsei Lee, Hyukjun Kwon, Jiseung Kim, Seohyun Kim, Mohsen Imani, Yeseong Kim:
Towards Forward-Only Learning for Hyperdimensional Computing. DATE 2024: 1-2 - [c59]Hyunsei Lee, Jiseung Kim, Seohyun Kim, Hyukjun Kwon, Mohsen Imani, Ilhong Suh, Yeseong Kim:
Efficient Forward-Only Training for Brain-Inspired Hyperdimensional Computing. ICCD 2024: 707-714 - [c58]Hyukjun Kwon, Kangwon Kim, Junyoung Lee, Hyunsei Lee, Jiseung Kim, Jinhyung Kim, Taehyung Kim, Yongnyeon Kim, Yang Ni, Mohsen Imani, Ilhong Suh, Yeseong Kim:
Brain-Inspired Hyperdimensional Computing in the Wild: Lightweight Symbolic Learning for Sensorimotor Controls of Wheeled Robots. ICRA 2024: 5176-5182 - [i6]Sungheon Jeong, Hamza Errahmouni Barkam, Sanggeon Yun, Yeseong Kim, Shaahin Angizi, Mohsen Imani:
Exploiting Boosting in Hyperdimensional Computing for Enhanced Reliability in Healthcare. CoRR abs/2411.14612 (2024) - 2023
- [c57]Hyunsei Lee, Jiseung Kim, Hanning Chen, Ariela Zeira, Narayan Srinivasa, Mohsen Imani, Yeseong Kim:
Comprehensive Integration of Hyperdimensional Computing with Deep Learning towards Neuro-Symbolic AI. DAC 2023: 1-6 - [c56]Sanghoon Lee, Jongho Park, Minho Ha, Byungil Koh, Kyoung Park, Yeseong Kim:
Sidekick: Near Data Processing for Clustering Enhanced by Automatic Memory Disaggregation. DAC 2023: 1-6 - [c55]Jiseung Kim, Hyunsei Lee, Mohsen Imani, Yeseong Kim:
Efficient Hyperdimensional Learning with Trainable, Quantizable, and Holistic Data Representation. DATE 2023: 1-6 - [c54]Yang Ni, Danny Abraham, Mariam Issa, Yeseong Kim, Pietro Mercati, Mohsen Imani:
Efficient Off-Policy Reinforcement Learning via Brain-Inspired Computing. ACM Great Lakes Symposium on VLSI 2023: 449-453 - [c53]Mohsen Imani, Yeseong Kim, Behnam Khaleghi, Justin Morris, Haleh Alimohamadi, Farhad Imani, Hugo Latapie:
Hierarchical, Distributed and Brain-Inspired Learning for Internet of Things Systems. ICDCS 2023: 511-522 - [c52]Yang Ni, Yeseong Kim, Tajana Rosing, Mohsen Imani:
Algorithm-Hardware Co-Design for Efficient Brain-Inspired Hyperdimensional Learning on Edge (Extended Abstract). IJCAI 2023: 6474-6479 - [c51]Hanning Chen, Yeseong Kim, Elaheh Sadredini, Saransh Gupta, Hugo Latapie, Mohsen Imani:
Sparsity Controllable Hyperdimensional Computing for Genome Sequence Matching Acceleration. VLSI-SoC 2023: 1-6 - 2022
- [j6]Saransh Gupta, Mohsen Imani, Joonseop Sim, Andrew Huang, Fan Wu, Jaeyoung Kang, Yeseong Kim, Tajana Simunic Rosing:
COSMO: Computing with Stochastic Numbers in Memory. ACM J. Emerg. Technol. Comput. Syst. 18(2): 37:1-37:25 (2022) - [j5]Jaeyoung Kang, Behnam Khaleghi, Tajana Rosing, Yeseong Kim:
OpenHD: A GPU-Powered Framework for Hyperdimensional Computing. IEEE Trans. Computers 71(11): 2753-2765 (2022) - [c50]Jaeyoung Kang, Behnam Khaleghi, Yeseong Kim, Tajana Rosing:
XCelHD: An Efficient GPU-Powered Hyperdimensional Computing with Parallelized Training. ASP-DAC 2022: 220-225 - [c49]Mohsen Imani, Ali Zakeri, Hanning Chen, Taehyun Kim, Prathyush Poduval, Hyunsei Lee, Yeseong Kim, Elaheh Sadredini, Farhad Imani:
Neural computation for robust and holographic face detection. DAC 2022: 31-36 - [c48]Prathyush Poduval, Yang Ni, Yeseong Kim, Kai Ni, Raghavan Kumar, Rosario Cammarota, Mohsen Imani:
Adaptive neural recovery for highly robust brain-like representation. DAC 2022: 367-372 - [c47]Jongho Park, Hyukjun Kwon, Seowoo Kim, Junyoung Lee, Minho Ha, Euicheol Lim, Mohsen Imani, Yeseong Kim:
QuiltNet: efficient deep learning inference on multi-chip accelerators using model partitioning. DAC 2022: 1159-1164 - [c46]Yang Ni, Yeseong Kim, Tajana Rosing, Mohsen Imani:
Algorithm-Hardware Co-Design for Efficient Brain-Inspired Hyperdimensional Learning on Edge. DATE 2022: 292-297 - [c45]Yang Ni, Yeseong Kim, Tajana Rosing, Mohsen Imani:
Online Performance and Power Prediction for Edge TPU via Comprehensive Characterization. DATE 2022: 612-615 - [c44]Jun S. Shim, Bogyeong Han, Yeseong Kim, Jihong Kim:
DeepPM: Transformer-based Power and Performance Prediction for Energy-Aware Software. DATE 2022: 1491-1496 - [c43]Jisung Park, Jeonggyun Kim, Yeseong Kim, Sungjin Lee, Onur Mutlu:
DeepSketch: A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression. FAST 2022: 247-264 - [c42]Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi Imani, Elaheh Sadredini, Rosario Cammarota, Mohsen Imani:
BioHD: an efficient genome sequence search platform using HyperDimensional memorization. ISCA 2022: 656-669 - [i5]Jisung Park, Jeoggyun Kim, Yeseong Kim, Sungjin Lee, Onur Mutlu:
DeepSketch: A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression. CoRR abs/2202.10584 (2022) - [i4]Yang Ni, Danny Abraham, Mariam Issa, Yeseong Kim, Pietro Mercati, Mohsen Imani:
QHD: A brain-inspired hyperdimensional reinforcement learning algorithm. CoRR abs/2205.06978 (2022) - 2021
- [j4]Hyeon Gyu Lee, Minwook Kim, Juwon Lee, Eunji Lee, Bryan S. Kim, Sungjin Lee, Yeseong Kim, Sang Lyul Min, Jin-Soo Kim:
Learned Performance Model for SSD. IEEE Comput. Archit. Lett. 20(2): 154-157 (2021) - [c41]Yunhui Guo, Mohsen Imani, Jaeyoung Kang, Sahand Salamat, Justin Morris, Baris Aksanli, Yeseong Kim, Tajana Rosing:
HyperRec: Efficient Recommender Systems with Hyperdimensional Computing. ASP-DAC 2021: 384-389 - [c40]Minxuan Zhou, Mohsen Imani, Yeseong Kim, Saransh Gupta, Tajana Rosing:
DP-Sim: A Full-stack Simulation Infrastructure for Digital Processing In-Memory Architectures. ASP-DAC 2021: 639-644 - [c39]Yeseong Kim, Jiseung Kim, Mohsen Imani:
CascadeHD: Efficient Many-Class Learning Framework Using Hyperdimensional Computing. DAC 2021: 775-780 - [c38]Sahand Salamat, Jaeyoung Kang, Yeseong Kim, Mohsen Imani, Niema Moshiri, Tajana Rosing:
FPGA Acceleration of Protein Back-Translation and Alignment. DATE 2021: 822-827 - [c37]Zhuowen Zou, Yeseong Kim, M. Hassan Najafi, Mohsen Imani:
ManiHD: Efficient Hyper-Dimensional Learning Using Manifold Trainable Encoder. DATE 2021: 850-855 - [c36]Alejandro Hernández-Cano, Yeseong Kim, Mohsen Imani:
A Framework for Efficient and Binary Clustering in High-Dimensional Space. DATE 2021: 1859-1864 - [c35]Mohsen Imani, Zhuowen Zou, Samuel Bosch, Sanjay Anantha Rao, Sahand Salamat, Venkatesh Kumar, Yeseong Kim, Tajana Rosing:
Revisiting HyperDimensional Learning for FPGA and Low-Power Architectures. HPCA 2021: 221-234 - [c34]Yeseong Kim, Mohsen Imani, Saransh Gupta, Minxuan Zhou, Tajana Simunic Rosing:
Massively Parallel Big Data Classification on a Programmable Processing In-Memory Architecture. ICCAD 2021: 1-9 - [c33]Jiseung Kim, Hyunsei Lee, Mohsen Imani, Yeseong Kim:
Efficient Brain-Inspired Hyperdimensional Learning with Spatiotemporal Structured Data. MASCOTS 2021: 1-8 - [c32]Zhuowen Zou, Yeseong Kim, Farhad Imani, Haleh Alimohamadi, Rosario Cammarota, Mohsen Imani:
Scalable edge-based hyperdimensional learning system with brain-like neural adaptation. SC 2021: 38 - [i3]Zhuowen Zou, Haleh Alimohamadi, Farhad Imani, Yeseong Kim, Mohsen Imani:
Spiking Hyperdimensional Network: Neuromorphic Models Integrated with Memory-Inspired Framework. CoRR abs/2110.00214 (2021) - 2020
- [b1]Yeseong Kim:
Efficient Learning in Heterogeneous Internet of Things Ecosystems. University of California, San Diego, USA, 2020 - [c31]Yeseong Kim, Mohsen Imani, Niema Moshiri, Tajana Rosing:
GenieHD: Efficient DNA Pattern Matching Accelerator Using Hyperdimensional Computing. DATE 2020: 115-120 - [c30]Mohsen Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar, Tajana Rosing:
Deep Learning Acceleration with Neuron-to-Memory Transformation. HPCA 2020: 1-14 - [c29]Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, Tajana Rosing:
SHEARer: highly-efficient hyperdimensional computing by software-hardware enabled multifold approximation. ISLPED 2020: 241-246 - [c28]Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim, Tajana Rosing:
DUAL: Acceleration of Clustering Algorithms using Digital-based Processing In-Memory. MICRO 2020: 356-371 - [c27]Mohsen Imani, Saransh Gupta, Yeseong Kim, Tajana Rosing:
Deep Learning Acceleration using Digital-Based Processing In-Memory. SoCC 2020: 123-128 - [i2]Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, Tajana Rosing:
SHEARer: Highly-Efficient Hyperdimensional Computing by Software-Hardware Enabled Multifold Approximation. CoRR abs/2007.10330 (2020)
2010 – 2019
- 2019
- [j3]Yeseong Kim, Mohsen Imani, Tajana Simunic Rosing:
Image Recognition Accelerator Design Using In-Memory Processing. IEEE Micro 39(1): 17-23 (2019) - [c26]Mohsen Imani, Yeseong Kim, M. Sadegh Riazi, John Messerly, Patric Liu, Farinaz Koushanfar, Tajana Rosing:
A Framework for Collaborative Learning in Secure High-Dimensional Space. CLOUD 2019: 435-446 - [c25]Minxuan Zhou, Mohsen Imani, Saransh Gupta, Yeseong Kim, Tajana Rosing:
GRAM: graph processing in a ReRAM-based computational memory. ASP-DAC 2019: 591-596 - [c24]Yeseong Kim, Ankit More, Emily Shriver, Tajana Rosing:
Application Performance Prediction and Optimization Under Cache Allocation Technology. DATE 2019: 1285-1288 - [c23]Mohsen Imani, Yeseong Kim, Thomas Worley, Saransh Gupta, Tajana Rosing:
HDCluster: An Accurate Clustering Using Brain-Inspired High-Dimensional Computing. DATE 2019: 1591-1594 - [c22]Joonseop Sim, Saransh Gupta, Mohsen Imani, Yeseong Kim, Tajana Rosing:
UPIM: Unipolar Switching Logic for High Density Processing-in-Memory Applications. ACM Great Lakes Symposium on VLSI 2019: 255-258 - [c21]Mohsen Imani, Saransh Gupta, Yeseong Kim, Minxuan Zhou, Tajana Rosing:
DigitalPIM: Digital-based Processing In-Memory for Big Data Acceleration. ACM Great Lakes Symposium on VLSI 2019: 429-434 - [c20]Anthony Thomas, Yunhui Guo, Yeseong Kim, Baris Aksanli, Arun Kumar, Tajana Simunic Rosing:
Hierarchical and Distributed Machine Learning Inference Beyond the Edge. ICNSC 2019: 18-23 - [c19]Mohsen Imani, Saransh Gupta, Yeseong Kim, Tajana Rosing:
FloatPIM: in-memory acceleration of deep neural network training with high precision. ISCA 2019: 802-815 - [c18]Dongwon Park, Ilgweon Kang, Yeseong Kim, Sicun Gao, Bill Lin, Chung-Kuan Cheng:
ROAD: Routability Analysis and Diagnosis Framework Based on SAT Techniques. ISPD 2019: 65-72 - [c17]Joonseop Sim, Minsu Kim, Yeseong Kim, Saransh Gupta, Behnam Khaleghi, Tajana Rosing:
MAPIM: Mat Parallelism for High Performance Processing in Non-volatile Memory Architecture. ISQED 2019: 145-150 - [c16]Rishikanth Chandrasekaran, Yunhui Guo, Anthony Thomas, Massimiliano Menarini, Michael H. Ostertag, Yeseong Kim, Tajana Rosing:
Efficient Sparse Processing in Smart Home Applications. SenSys-ML 2019: 19-24 - 2018
- [c15]Yeseong Kim, Mohsen Imani, Tajana Simunic Rosing:
Efficient human activity recognition using hyperdimensional computing. IOT 2018: 38:1-38:6 - [c14]Joonseop Sim, Mohsen Imani, Woojin Choi, Yeseong Kim, Tajana Rosing:
LUPIS: Latch-up based ultra efficient processing in-memory system. ISQED 2018: 55-60 - [i1]Mohsen Imani, Mohammad Samragh, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar, Tajana Rosing:
RAPIDNN: In-Memory Deep Neural Network Acceleration Framework. CoRR abs/1806.05794 (2018) - 2017
- [c13]Mohsen Imani, Yeseong Kim, Tajana Rosing:
MPIM: Multi-purpose in-memory processing using configurable resistive memory. ASP-DAC 2017: 757-763 - [c12]Wanlin Cui, Yeseong Kim, Tajana Simunic Rosing:
Cross-platform machine learning characterization for task allocation in IoT ecosystems. CCWC 2017: 1-7 - [c11]Mohsen Imani, Daniel Peroni, Yeseong Kim, Abbas Rahimi, Tajana Rosing:
Efficient neural network acceleration on GPGPU using content addressable memory. DATE 2017: 1026-1031 - [c10]Yeseong Kim, Mohsen Imani, Tajana Rosing:
ORCHARD: Visual object recognition accelerator based on approximate in-memory processing. ICCAD 2017: 25-32 - [c9]Yeseong Kim, Pietro Mercati, Ankit More, Emily Shriver, Tajana Rosing:
P4: Phase-based power/performance prediction of heterogeneous systems via neural networks. ICCAD 2017: 683-690 - [c8]Mohsen Imani, Yeseong Kim, Tajana Rosing:
NNgine: Ultra-Efficient Nearest Neighbor Accelerator Based on In-Memory Computing. ICRC 2017: 1-8 - [c7]Joonseop Sim, Mohsen Imani, Yeseong Kim, Tajana Rosing:
Enabling efficient system design using vertical nanowire transistor current mode logic. VLSI-SoC 2017: 1-6 - 2016
- [j2]Yeseong Kim, Boyeong Jeon, Jihong Kim:
A Personalized Network Activity-Aware Approach to Reducing Radio Energy Consumption of Smartphones. IEEE Trans. Mob. Comput. 15(3): 544-557 (2016) - [c6]Mohsen Imani, Yeseong Kim, Abbas Rahimi, Tajana Rosing:
ACAM: Approximate Computing Based on Adaptive Associative Memory with Online Learning. ISLPED 2016: 162-167 - [c5]Mohsen Imani, Abbas Rahimi, Yeseong Kim, Tajana Rosing:
A low-power hybrid magnetic cache architecture exploiting narrow-width values. NVMSA 2016: 1-6 - 2015
- [c4]Yeseong Kim, Francesco Paterna, Sameer Tilak, Tajana Simunic Rosing:
Smartphone Analysis and Optimization based on User Activity Recognition. ICCAD 2015: 605-612 - [c3]Yeseong Kim, Mohsen Imani, Shruti Patil, Tajana Simunic Rosing:
CAUSE: Critical Application Usage-Aware Memory System using Non-volatile Memory for Mobile Devices. ICCAD 2015: 690-696 - [c2]Shruti Patil, Yeseong Kim, Kunal Korgaonkar, Ibrahim Awwal, Tajana Simunic Rosing:
Characterization of User's Behavior Variations for Design of Replayable Mobile Workloads. MobiCASE 2015: 51-70 - 2014
- [j1]Wook Song, Yeseong Kim, Hakbong Kim, Jehun Lim, Jihong Kim:
Personalized optimization for android smartphones. ACM Trans. Embed. Comput. Syst. 13(2s): 60:1-60:25 (2014) - 2012
- [c1]Yeseong Kim, Jihong Kim:
Personalized Diapause: Reducing Radio Energy Consumption of Smartphones by Network-Context Aware Dormancy Predictions. HotPower 2012
Coauthor Index
aka: Tajana Simunic Rosing
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 20:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint