default search action
Christopher Musco
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j5]Majid Daliri, Juliana Freire, Christopher Musco, Aécio S. R. Santos, Haoxiang Zhang:
Sampling Methods for Inner Product Sketching. Proc. VLDB Endow. 17(9): 2185-2197 (2024) - [c47]Lucas Rosenblatt, Julia Stoyanovich, Christopher Musco:
A Simple and Practical Method for Reducing the Disparate Impact of Differential Privacy. AAAI 2024: 21554-21562 - [c46]Aarshvi Gajjar, Wai Ming Tai, Xingyu Xu, Chinmay Hegde, Christopher Musco, Yi Li:
Agnostic Active Learning of Single Index Models with Linear Sample Complexity. COLT 2024: 1715-1754 - [c45]Yujia Jin, Ishani Karmarkar, Christopher Musco, Aaron Sidford, Apoorv Vikram Singh:
Faster Spectral Density Estimation and Sparsification in the Nuclear Norm (Extended Abstract). COLT 2024: 2722 - [c44]Atsushi Shimizu, Xiaoou Cheng, Christopher Musco, Jonathan Weare:
Improved Active Learning via Dependent Leverage Score Sampling. ICLR 2024 - [c43]Raphael A. Meyer, Cameron Musco, Christopher Musco:
On the Unreasonable Effectiveness of Single Vector Krylov Methods for Low-Rank Approximation. SODA 2024: 811-845 - [c42]Majid Daliri, Juliana Freire, Christopher Musco, Aécio S. R. Santos, Haoxiang Zhang:
Simple Analysis of Priority Sampling. SOSA 2024: 224-229 - [i60]Noah Amsel, Tyler Chen, Feyza Duman Keles, Diana Halikias, Cameron Musco, Christopher Musco:
Fixed-sparsity matrix approximation from matrix-vector products. CoRR abs/2402.09379 (2024) - [i59]Michal Derezinski, Christopher Musco, Jiaming Yang:
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning. CoRR abs/2405.05865 (2024) - [i58]Aarshvi Gajjar, Wai Ming Tai, Xingyu Xu, Chinmay Hegde, Christopher Musco, Yi Li:
Agnostic Active Learning of Single Index Models with Linear Sample Complexity. CoRR abs/2405.09312 (2024) - [i57]Haya Diwan, Jinrui Gou, Cameron Musco, Christopher Musco, Torsten Suel:
Navigable Graphs for High-Dimensional Nearest Neighbor Search: Constructions and Limits. CoRR abs/2405.18680 (2024) - [i56]Yujia Jin, Ishani Karmarkar, Christopher Musco, Aaron Sidford, Apoorv Vikram Singh:
Faster Spectral Density Estimation and Sparsification in the Nuclear Norm. CoRR abs/2406.07521 (2024) - [i55]Tyler Chen, Feyza Duman Keles, Diana Halikias, Cameron Musco, Christopher Musco, David Persson:
Near-optimal hierarchical matrix approximation from matrix-vector products. CoRR abs/2407.04686 (2024) - [i54]Majid Daliri, Christopher Musco, Ananda Theertha Suresh:
Coupling without Communication and Drafter-Invariant Speculative Decoding. CoRR abs/2408.07978 (2024) - [i53]Cameron Musco, Christopher Musco, Lucas Rosenblatt, Apoorv Vikram Singh:
Sharper Bounds for Chebyshev Moment Matching with Applications to Differential Privacy and Beyond. CoRR abs/2408.12385 (2024) - [i52]R. Teal Witter, Christopher Musco:
Benchmarking Estimators for Natural Experiments: A Novel Dataset and a Doubly Robust Algorithm. CoRR abs/2409.04500 (2024) - [i51]Christopher Musco, R. Teal Witter:
Provably Accurate Shapley Value Estimation via Leverage Score Sampling. CoRR abs/2410.01917 (2024) - [i50]Rajarshi Bhattacharjee, Rajesh Jayaram, Cameron Musco, Christopher Musco, Archan Ray:
Improved Spectral Density Estimation via Explicit and Implicit Deflation. CoRR abs/2410.21690 (2024) - 2023
- [j4]Tyler Chen, Anne Greenbaum, Cameron Musco, Christopher Musco:
Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation. SIAM J. Matrix Anal. Appl. 44(2): 670-692 (2023) - [c41]Aarshvi Gajjar, Christopher Musco, Chinmay Hegde:
Active Learning for Single Neuron Models with Lipschitz Non-Linearities. AISTATS 2023: 4101-4113 - [c40]Yujia Jin, Christopher Musco, Aaron Sidford, Apoorv Vikram Singh:
Moments, Random Walks, and Limits for Spectrum Approximation. COLT 2023: 5373-5394 - [c39]Chuhan Yang, Christopher Musco:
Efficient Block Approximate Matrix Multiplication. ESA 2023: 103:1-103:15 - [c38]Xinyu Luo, Christopher Musco, Cas Widdershoven:
Dimensionality Reduction for General KDE Mode Finding. ICML 2023: 23067-23082 - [c37]Arun Jambulapati, Jerry Li, Christopher Musco, Kirankumar Shiragur, Aaron Sidford, Kevin Tian:
Structured Semidefinite Programming for Recovering Structured Preconditioners. NeurIPS 2023 - [c36]Aline Bessa, Majid Daliri, Juliana Freire, Cameron Musco, Christopher Musco, Aécio S. R. Santos, Haoxiang Zhang:
Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation. PODS 2023: 169-181 - [c35]Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, Samson Zhou:
Near-Linear Sample Complexity for Lp Polynomial Regression. SODA 2023: 3959-4025 - [c34]Prathamesh Dharangutte, Christopher Musco:
A Tight Analysis of Hutchinson's Diagonal Estimator. SOSA 2023: 353-364 - [i49]Aline Bessa, Majid Daliri, Juliana Freire, Cameron Musco, Christopher Musco, Aécio S. R. Santos, Haoxiang Zhang:
Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation. CoRR abs/2301.05811 (2023) - [i48]Noah Amsel, Tyler Chen, Anne Greenbaum, Cameron Musco, Christopher Musco:
Near-Optimality Guarantees for Approximating Rational Matrix Functions by the Lanczos Method. CoRR abs/2303.03358 (2023) - [i47]Raphael A. Meyer, Cameron Musco, Christopher Musco:
On the Unreasonable Effectiveness of Single Vector Krylov Methods for Low-Rank Approximation. CoRR abs/2305.02535 (2023) - [i46]Xinyu Luo, Christopher Musco, Cas Widdershoven:
Dimensionality Reduction for General KDE Mode Finding. CoRR abs/2305.18755 (2023) - [i45]Yujia Jin, Christopher Musco, Aaron Sidford, Apoorv Vikram Singh:
Moments, Random Walks, and Limits for Spectrum Approximation. CoRR abs/2307.00474 (2023) - [i44]Majid Daliri, Juliana Freire, Christopher Musco, Aécio S. R. Santos, Haoxiang Zhang:
Simple Analysis of Priority Sampling. CoRR abs/2308.05907 (2023) - [i43]Majid Daliri, Juliana Freire, Christopher Musco, Aécio S. R. Santos, Haoxiang Zhang:
Sampling Methods for Inner Product Sketching. CoRR abs/2309.16157 (2023) - [i42]Atsushi Shimizu, Xiaoou Cheng, Christopher Musco, Jonathan Weare:
Improved Active Learning via Dependent Leverage Score Sampling. CoRR abs/2310.04966 (2023) - [i41]Arun Jambulapati, Jerry Li, Christopher Musco, Kirankumar Shiragur, Aaron Sidford, Kevin Tian:
Structured Semidefinite Programming for Recovering Structured Preconditioners. CoRR abs/2310.18265 (2023) - [i40]David Persson, Raphael A. Meyer, Christopher Musco:
Algorithm-agnostic low-rank approximation of operator monotone matrix functions. CoRR abs/2311.14023 (2023) - [i39]Lucas Rosenblatt, Julia Stoyanovich, Christopher Musco:
A Simple and Practical Method for Reducing the Disparate Impact of Differential Privacy. CoRR abs/2312.11712 (2023) - 2022
- [j3]Mengxi Wu, Yi-Jen Chiang, Christopher Musco:
Streaming Approach to In Situ Selection of Key Time Steps for Time-Varying Volume Data. Comput. Graph. Forum 41(3): 309-320 (2022) - [j2]Tyler Chen, Anne Greenbaum, Cameron Musco, Christopher Musco:
Error Bounds for Lanczos-Based Matrix Function Approximation. SIAM J. Matrix Anal. Appl. 43(2): 787-811 (2022) - [c33]Cameron Musco, Christopher Musco, David P. Woodruff, Taisuke Yasuda:
Active Linear Regression for ℓp Norms and Beyond. FOCS 2022: 744-753 - [c32]Aécio S. R. Santos, Aline Bessa, Christopher Musco, Juliana Freire:
A Sketch-based Index for Correlated Dataset Search. ICDE 2022: 2928-2941 - [c31]Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, Samson Zhou:
Fast Regression for Structured Inputs. ICLR 2022 - [c30]Vladimir Braverman, Aditya Krishnan, Christopher Musco:
Sublinear time spectral density estimation. STOC 2022: 1144-1157 - [i38]Tyler Chen, Anne Greenbaum, Cameron Musco, Christopher Musco:
Low-memory Krylov subspace methods for optimal rational matrix function approximation. CoRR abs/2202.11251 (2022) - [i37]Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, Samson Zhou:
Fast Regression for Structured Inputs. CoRR abs/2203.07557 (2022) - [i36]Prathamesh Dharangutte, Christopher Musco:
A Tight Analysis of Hutchinson's Diagonal Estimator. CoRR abs/2208.03268 (2022) - [i35]Aarshvi Gajjar, Chinmay Hegde, Christopher Musco:
Active Learning for Single Neuron Models with Lipschitz Non-Linearities. CoRR abs/2210.13601 (2022) - [i34]Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, Samson Zhou:
Near-Linear Sample Complexity for Lp Polynomial Regression. CoRR abs/2211.06790 (2022) - 2021
- [c29]Prathamesh Dharangutte, Christopher Musco:
Graph Learning for Inverse Landscape Genetics. AAAI 2021: 14739-14747 - [c28]Jasper C. H. Lee, Jerry Li, Christopher Musco, Jeff M. Phillips, Wai Ming Tai:
Finding an Approximate Mode of a Kernel Density Estimate. ESA 2021: 61:1-61:19 - [c27]Cameron Musco, Christopher Musco, David P. Woodruff:
Simple Heuristics Yield Provable Algorithms for Masked Low-Rank Approximation. ITCS 2021: 6:1-6:20 - [c26]Prathamesh Dharangutte, Christopher Musco:
Dynamic Trace Estimation. NeurIPS 2021: 30088-30099 - [c25]Aécio S. R. Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, Juliana Freire:
Correlation Sketches for Approximate Join-Correlation Queries. SIGMOD Conference 2021: 1531-1544 - [c24]Sheng Wang, Yuan Sun, Christopher Musco, Zhifeng Bao:
Public Transport Planning: When Transit Network Connectivity Meets Commuting Demand. SIGMOD Conference 2021: 1906-1919 - [c23]Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff:
Hutch++: Optimal Stochastic Trace Estimation. SOSA 2021: 142-155 - [i33]Sheng Wang, Yuan Sun, Christopher Musco, Zhifeng Bao:
Public Transport Planning: When Transit Network Connectivity Meets Commuting Demand. CoRR abs/2103.16084 (2021) - [i32]Aécio S. R. Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, Juliana Freire:
Correlation Sketches for Approximate Join-Correlation Queries. CoRR abs/2104.03353 (2021) - [i31]Vladimir Braverman, Aditya Krishnan, Christopher Musco:
Linear and Sublinear Time Spectral Density Estimation. CoRR abs/2104.03461 (2021) - [i30]Tyler Chen, Anne Greenbaum, Cameron Musco, Christopher Musco:
Error bounds for Lanczos-based matrix function approximation. CoRR abs/2106.09806 (2021) - [i29]Christopher Musco, Indu Ramesh, Johan Ugander, R. Teal Witter:
How to Quantify Polarization in Models of Opinion Dynamics. CoRR abs/2110.11981 (2021) - [i28]Prathamesh Dharangutte, Christopher Musco:
Dynamic Trace Estimation. CoRR abs/2110.13752 (2021) - [i27]Cameron Musco, Christopher Musco, David P. Woodruff, Taisuke Yasuda:
Active Sampling for Linear Regression Beyond the $\ell_2$ Norm. CoRR abs/2111.04888 (2021) - 2020
- [c22]Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P. Woodruff, Samson Zhou:
Near Optimal Linear Algebra in the Online and Sliding Window Models. FOCS 2020: 517-528 - [c21]Hannah Lawrence, Jerry Li, Cameron Musco, Christopher Musco:
Low-Rank Toeplitz Matrix Estimation Via Random Ultra-Sparse Rulers. ICASSP 2020: 4796-4800 - [c20]Tamás Erdélyi, Cameron Musco, Christopher Musco:
Fourier Sparse Leverage Scores and Approximate Kernel Learning. NeurIPS 2020 - [c19]Raphael A. Meyer, Christopher Musco:
The Statistical Cost of Robust Kernel Hyperparameter Turning. NeurIPS 2020 - [c18]Yonina C. Eldar, Jerry Li, Cameron Musco, Christopher Musco:
Sample Efficient Toeplitz Covariance Estimation. SODA 2020: 378-397 - [c17]Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron Sidford, Jakab Tardos:
Fast and Space Efficient Spectral Sparsification in Dynamic Streams. SODA 2020: 1814-1833 - [c16]Uthsav Chitra, Christopher Musco:
Analyzing the Impact of Filter Bubbles on Social Network Polarization. WSDM 2020: 115-123 - [i26]Cameron Musco, Christopher Musco:
Projection-Cost-Preserving Sketches: Proof Strategies and Constructions. CoRR abs/2004.08434 (2020) - [i25]Tamás Erdélyi, Cameron Musco, Christopher Musco:
Fourier Sparse Leverage Scores and Approximate Kernel Learning. CoRR abs/2006.07340 (2020) - [i24]Raphael A. Meyer, Christopher Musco:
The Statistical Cost of Robust Kernel Hyperparameter Tuning. CoRR abs/2006.08035 (2020) - [i23]Prathamesh Dharangutte, Christopher Musco:
Graph Learning for Inverse Landscape Genetics. CoRR abs/2006.12334 (2020) - [i22]Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff:
Hutch++: Optimal Stochastic Trace Estimation. CoRR abs/2010.09649 (2020)
2010 – 2019
- 2019
- [c15]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
A universal sampling method for reconstructing signals with simple Fourier transforms. STOC 2019: 1051-1063 - [i21]Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri:
Faster Spectral Sparsification in Dynamic Streams. CoRR abs/1903.12165 (2019) - [i20]Cameron Musco, Christopher Musco, David P. Woodruff:
Low-Rank Approximation from Communication Complexity. CoRR abs/1904.09841 (2019) - [i19]Yonina C. Eldar, Jerry Li, Cameron Musco, Christopher Musco:
Sample Efficient Toeplitz Covariance Estimation. CoRR abs/1905.05643 (2019) - [i18]Uthsav Chitra, Christopher Musco:
Understanding Filter Bubbles and Polarization in Social Networks. CoRR abs/1906.08772 (2019) - [i17]Hannah Lawrence, Jerry Li, Cameron Musco, Christopher Musco:
Low-Rank Toeplitz Matrix Estimation via Random Ultra-Sparse Rulers. CoRR abs/1911.08015 (2019) - [i16]Jasper C. H. Lee, Jerry Li, Christopher Musco, Jeff M. Phillips, Wai Ming Tai:
Finding the Mode of a Kernel Density Estimate. CoRR abs/1912.07673 (2019) - 2018
- [b1]Christopher Musco:
Faster linear algebra for data analysis and machine learning. Massachusetts Institute of Technology, Cambridge, USA, 2018 - [c14]Frederik Mallmann-Trenn, Cameron Musco, Christopher Musco:
Eigenvector Computation and Community Detection in Asynchronous Gossip Models. ICALP 2018: 159:1-159:14 - [c13]Jeremy G. Hoskins, Cameron Musco, Christopher Musco, Babis Tsourakakis:
Inferring Networks From Random Walk-Based Node Similarities. NeurIPS 2018: 3708-3719 - [c12]Cameron Musco, Christopher Musco, Aaron Sidford:
Stability of the Lanczos Method for Matrix Function Approximation. SODA 2018: 1605-1624 - [c11]Cameron Musco, Christopher Musco, Charalampos E. Tsourakakis:
Minimizing Polarization and Disagreement in Social Networks. WWW 2018: 369-378 - [i15]Jeremy G. Hoskins, Cameron Musco, Christopher Musco, Charalampos E. Tsourakakis:
Learning Networks from Random Walk-Based Node Similarities. CoRR abs/1801.07386 (2018) - [i14]Frederik Mallmann-Trenn, Cameron Musco, Christopher Musco:
Eigenvector Computation and Community Detection in Asynchronous Gossip Models. CoRR abs/1804.08548 (2018) - [i13]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. CoRR abs/1804.09893 (2018) - [i12]Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P. Woodruff, Samson Zhou:
Near Optimal Linear Algebra in the Online and Sliding Window Models. CoRR abs/1805.03765 (2018) - [i11]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms. CoRR abs/1812.08723 (2018) - 2017
- [j1]Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, Aaron Sidford:
Single Pass Spectral Sparsification in Dynamic Streams. SIAM J. Comput. 46(1): 456-477 (2017) - [c10]Christopher Musco, Maxim Sviridenko, Justin Thaler:
Determining Tournament Payout Structures for Daily Fantasy Sports. ALENEX 2017: 172-184 - [c9]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. ICML 2017: 253-262 - [c8]Cameron Musco, Christopher Musco:
Recursive Sampling for the Nystrom Method. NIPS 2017: 3833-3845 - [c7]Michael B. Cohen, Cameron Musco, Christopher Musco:
Input Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling. SODA 2017: 1758-1777 - [i10]Cameron Musco, Christopher Musco, Aaron Sidford:
Stability of the Lanczos Method for Matrix Function Approximation. CoRR abs/1708.07788 (2017) - [i9]Cameron Musco, Christopher Musco, Charalampos E. Tsourakakis:
Minimizing Polarization and Disagreement in Social Networks. CoRR abs/1712.09948 (2017) - 2016
- [c6]Roy Frostig, Cameron Musco, Christopher Musco, Aaron Sidford:
Principal Component Projection Without Principal Component Analysis. ICML 2016: 2349-2357 - [i8]Christopher Musco, Maxim Sviridenko, Justin Thaler:
Determining Tournament Payout Structures for Daily Fantasy Sports. CoRR abs/1601.04203 (2016) - [i7]Roy Frostig, Cameron Musco, Christopher Musco, Aaron Sidford:
Principal Component Projection Without Principal Component Analysis. CoRR abs/1602.06872 (2016) - [i6]Cameron Musco, Christopher Musco:
Provably Useful Kernel Matrix Approximation in Linear Time. CoRR abs/1605.07583 (2016) - 2015
- [c5]Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, Aaron Sidford:
Uniform Sampling for Matrix Approximation. ITCS 2015: 181-190 - [c4]Brendan Juba, Christopher Musco, Fan Long, Stelios Sidiroglou-Douskos, Martin C. Rinard:
Principled Sampling for Anomaly Detection. NDSS 2015 - [c3]Cameron Musco, Christopher Musco:
Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition. NIPS 2015: 1396-1404 - [c2]Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, Madalina Persu:
Dimensionality Reduction for k-Means Clustering and Low Rank Approximation. STOC 2015: 163-172 - [i5]Cameron Musco, Christopher Musco:
Stronger Approximate Singular Value Decomposition via the Block Lanczos and Power Methods. CoRR abs/1504.05477 (2015) - [i4]Michael B. Cohen, Cameron Musco, Christopher Musco:
Ridge Leverage Scores for Low-Rank Approximation. CoRR abs/1511.07263 (2015) - 2014
- [c1]Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, Aaron Sidford:
Single Pass Spectral Sparsification in Dynamic Streams. FOCS 2014: 561-570 - [i3]Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, Aaron Sidford:
Single Pass Spectral Sparsification in Dynamic Streams. CoRR abs/1407.1289 (2014) - [i2]Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, Aaron Sidford:
Uniform Sampling for Matrix Approximation. CoRR abs/1408.5099 (2014) - [i1]Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, Madalina Persu:
Dimensionality Reduction for k-Means Clustering and Low Rank Approximation. CoRR abs/1410.6801 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:16 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint