
Dustin Tran
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2020
- [j2]Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran, Swupnil Sahai, Paul Blomstedt, John P. Cunningham, David Schiminovich, Christian P. Robert:
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data. J. Mach. Learn. Res. 21: 17:1-17:53 (2020) - [c26]Jason Lee, Dustin Tran, Orhan Firat, Kyunghyun Cho:
On the Discrepancy between Density Estimation and Sequence Generation. SPNLP@EMNLP 2020: 84-94 - [c25]Michael W. Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen Jerfel, Katherine A. Heller, Andrew M. Dai:
Analyzing the role of model uncertainty for electronic health records. CHIL 2020: 204-213 - [c24]Yeming Wen, Dustin Tran, Jimmy Ba:
BatchEnsemble: an Alternative Approach to Efficient Ensemble and Lifelong Learning. ICLR 2020 - [c23]Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-An Ma, Jasper Snoek, Katherine A. Heller, Balaji Lakshminarayanan, Dustin Tran:
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. ICML 2020: 2782-2792 - [c22]Jeremiah Z. Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, Balaji Lakshminarayanan:
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness. NeurIPS 2020 - [c21]Florian Wenzel, Jasper Snoek, Dustin Tran, Rodolphe Jenatton:
Hyperparameter Ensembles for Robustness and Uncertainty Quantification. NeurIPS 2020 - [c20]Martin Mladenov, Chih-Wei Hsu, Vihan Jain, Eugene Ie, Christopher Colby, Nicolas Mayoraz, Hubert Pham, Dustin Tran, Ivan Vendrov, Craig Boutilier:
Demonstrating Principled Uncertainty Modeling for Recommender Ecosystems with RecSim NG. RecSys 2020: 591-593 - [i28]Yeming Wen, Dustin Tran, Jimmy Ba:
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning. CoRR abs/2002.06715 (2020) - [i27]Jason Lee, Dustin Tran, Orhan Firat, Kyunghyun Cho:
On the Discrepancy between Density Estimation and Sequence Generation. CoRR abs/2002.07233 (2020) - [i26]Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-An Ma, Jasper Snoek, Katherine A. Heller, Balaji Lakshminarayanan, Dustin Tran:
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. CoRR abs/2005.07186 (2020) - [i25]Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, Balaji Lakshminarayanan:
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness. CoRR abs/2006.10108 (2020) - [i24]Florian Wenzel, Jasper Snoek, Dustin Tran, Rodolphe Jenatton:
Hyperparameter Ensembles for Robustness and Uncertainty Quantification. CoRR abs/2006.13570 (2020) - [i23]Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew M. Dai, Dustin Tran:
Training independent subnetworks for robust prediction. CoRR abs/2010.06610 (2020) - [i22]Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, Dustin Tran:
Combining Ensembles and Data Augmentation can Harm your Calibration. CoRR abs/2010.09875 (2020)
2010 – 2019
- 2019
- [c19]Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, Dustin Tran:
Measuring Calibration in Deep Learning. CVPR Workshops 2019: 38-41 - [c18]Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole:
Discrete Flows: Invertible Generative Models of Discrete Data. DGS@ICLR 2019 - [c17]Dustin Tran, Mike Dusenberry, Mark van der Wilk, Danijar Hafner:
Bayesian Layers: A Module for Neural Network Uncertainty. NeurIPS 2019: 14633-14645 - [c16]Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole:
Discrete Flows: Invertible Generative Models of Discrete Data. NeurIPS 2019: 14692-14701 - [c15]Danijar Hafner, Dustin Tran, Timothy P. Lillicrap, Alex Irpan, James Davidson:
Noise Contrastive Priors for Functional Uncertainty. UAI 2019: 905-914 - [i21]Jeremy Nixon, Mike Dusenberry, Linchuan Zhang, Ghassen Jerfel, Dustin Tran:
Measuring Calibration in Deep Learning. CoRR abs/1904.01685 (2019) - [i20]Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole:
Discrete Flows: Invertible Generative Models of Discrete Data. CoRR abs/1905.10347 (2019) - [i19]Michael W. Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen Jerfel, Katherine A. Heller, Andrew M. Dai:
Analyzing the Role of Model Uncertainty for Electronic Health Records. CoRR abs/1906.03842 (2019) - 2018
- [c14]Dustin Tran, David M. Blei:
Implicit Causal Models for Genome-wide Association Studies. ICLR (Poster) 2018 - [c13]Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger B. Grosse:
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches. ICLR (Poster) 2018 - [c12]Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran:
Image Transformer. ICML 2018: 4052-4061 - [c11]Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul:
Simple, Distributed, and Accelerated Probabilistic Programming. NeurIPS 2018: 7609-7620 - [c10]Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, Blake A. Hechtman:
Mesh-TensorFlow: Deep Learning for Supercomputers. NeurIPS 2018: 10435-10444 - [i18]Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger B. Grosse:
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches. CoRR abs/1803.04386 (2018) - [i17]Danijar Hafner, Dustin Tran, Alex Irpan, Timothy P. Lillicrap, James Davidson:
Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors. CoRR abs/1807.09289 (2018) - [i16]Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, Blake A. Hechtman:
Mesh-TensorFlow: Deep Learning for Supercomputers. CoRR abs/1811.02084 (2018) - [i15]Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul, Matthew J. Johnson, Rif A. Saurous:
Simple, Distributed, and Accelerated Probabilistic Programming. CoRR abs/1811.02091 (2018) - [i14]Matthew D. Hoffman, Matthew J. Johnson, Dustin Tran:
Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language. CoRR abs/1811.11926 (2018) - [i13]Dustin Tran, Michael W. Dusenberry, Mark van der Wilk, Danijar Hafner:
Bayesian Layers: A Module for Neural Network Uncertainty. CoRR abs/1812.03973 (2018) - 2017
- [j1]Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei:
Automatic Differentiation Variational Inference. J. Mach. Learn. Res. 18: 14:1-14:45 (2017) - [c9]Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei:
Deep Probabilistic Programming. ICLR (Poster) 2017 - [c8]Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John W. Paisley, David M. Blei:
Variational Inference via \chi Upper Bound Minimization. NIPS 2017: 2732-2741 - [c7]Dustin Tran, Rajesh Ranganath, David M. Blei:
Hierarchical Implicit Models and Likelihood-Free Variational Inference. NIPS 2017: 5523-5533 - [i12]Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei:
Deep Probabilistic Programming. CoRR abs/1701.03757 (2017) - [i11]Dustin Tran, Rajesh Ranganath, David M. Blei:
Deep and Hierarchical Implicit Models. CoRR abs/1702.08896 (2017) - [i10]Dustin Tran, David M. Blei:
Implicit Causal Models for Genome-wide Association Studies. CoRR abs/1710.10742 (2017) - [i9]Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi, Matthew D. Hoffman, Rif A. Saurous:
TensorFlow Distributions. CoRR abs/1711.10604 (2017) - 2016
- [c6]Panos Toulis, Dustin Tran, Edoardo M. Airoldi:
Towards Stability and Optimality in Stochastic Gradient Descent. AISTATS 2016: 1290-1298 - [c5]Dustin Tran, Minjae Kim, Finale Doshi-Velez:
Spectral M-estimation with Applications to Hidden Markov Models. AISTATS 2016: 1421-1430 - [c4]Rajesh Ranganath, Dustin Tran, David M. Blei:
Hierarchical Variational Models. ICML 2016: 324-333 - [c3]Rajesh Ranganath, Dustin Tran, Jaan Altosaar, David M. Blei:
Operator Variational Inference. NIPS 2016: 496-504 - [c2]Dustin Tran, Rajesh Ranganath, David M. Blei:
Variational Gaussian Process. ICLR 2016 - [i8]Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei:
Automatic Differentiation Variational Inference. CoRR abs/1603.00788 (2016) - [i7]Dustin Tran, Minjae Kim, Finale Doshi-Velez:
Spectral M-estimation with Applications to Hidden Markov Models. CoRR abs/1603.08815 (2016) - [i6]Rajesh Ranganath, Jaan Altosaar, Dustin Tran, David M. Blei:
Operator Variational Inference. CoRR abs/1610.09033 (2016) - [i5]Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja R. Rudolph, Dawen Liang, David M. Blei:
Edward: A library for probabilistic modeling, inference, and criticism. CoRR abs/1610.09787 (2016) - [i4]Adji B. Dieng, Dustin Tran, Rajesh Ranganath, John W. Paisley, David M. Blei:
The $χ$-Divergence for Approximate Inference. CoRR abs/1611.00328 (2016) - 2015
- [c1]Dustin Tran, David M. Blei, Edoardo M. Airoldi:
Copula variational inference. NIPS 2015: 3564-3572 - [i3]Panos Toulis, Dustin Tran, Edoardo M. Airoldi:
Stability and optimality in stochastic gradient descent. CoRR abs/1505.02417 (2015) - [i2]Dustin Tran, David M. Blei, Edoardo M. Airoldi:
Variational inference with copula augmentation. CoRR abs/1506.03159 (2015) - [i1]Rajesh Ranganath, Dustin Tran, David M. Blei:
Hierarchical Variational Models. CoRR abs/1511.02386 (2015)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-01-10 01:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint