default search action
Rafael Molina 0001
Rafael Molina Soriano
Person information
- affiliation: University of Granada, Department of Computer Science and Artificial Intelligence, Spain
Other persons with the same name
- Rafael Molina 0002 — Institute of Physical Chemistry Rocasolano, Deparment of Crystallography and Structural Biology, Madrid, Spain
- Rafael Molina 0003 — Illinois Institute of Technology, Chicago, IL, USA
- Rafael Molina 0004 — Castilla La Mancha University, Spain
- Rafael Molina 0005 (aka: Rafael Molina Sánchez) — Technical University of Madrid, Harbor Research Laboratory, Spain
- Rafael Molina 0006 — Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j97]Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection. Artif. Intell. 331: 104115 (2024) - [j96]Fernando Pérez-Bueno, Kjersti Engan, Rafael Molina:
Robust blind color deconvolution and blood detection on histological images using Bayesian K-SVD. Artif. Intell. Medicine 156: 102969 (2024) - [j95]Neel Kanwal, Miguel López-Pérez, Umay Kiraz, Tahlita C. M. Zuiverloon, Rafael Molina, Kjersti Engan:
Are you sure it's an artifact? Artifact detection and uncertainty quantification in histological images. Comput. Medical Imaging Graph. 112: 102321 (2024) - [j94]Miguel López-Pérez, Pablo Morales-Álvarez, Lee A. D. Cooper, Christopher Felicelli, Jeffery A. Goldstein, Brian Vadasz, Rafael Molina, Aggelos K. Katsaggelos:
Learning from crowds for automated histopathological image segmentation. Comput. Medical Imaging Graph. 112: 102327 (2024) - [j93]Miguel López-Pérez, Alba Morquecho, Arne Schmidt, Fernando Pérez-Bueno, Aurelio Martín-Castro, Javier Mateos, Rafael Molina:
The CrowdGleason dataset: Learning the Gleason grade from crowds and experts. Comput. Methods Programs Biomed. 257: 108472 (2024) - [j92]Shuowen Yang, Fernando Pérez-Bueno, Francisco M. Castro-Macías, Rafael Molina, Aggelos K. Katsaggelos:
BCD-net: Stain separation of histological images using deep variational Bayesian blind color deconvolution. Digit. Signal Process. 145: 104318 (2024) - [j91]Jose Pérez-Cano, Yunan Wu, Arne Schmidt, Miguel López-Pérez, Pablo Morales-Álvarez, Rafael Molina, Aggelos K. Katsaggelos:
An end-to-end approach to combine attention feature extraction and Gaussian Process models for deep multiple instance learning in CT hemorrhage detection. Expert Syst. Appl. 240: 122296 (2024) - [j90]Arne Schmidt, Pablo Morales-Álvarez, Lee A. D. Cooper, Lee A. Newberg, Andinet Enquobahrie, Rafael Molina, Aggelos K. Katsaggelos:
Focused active learning for histopathological image classification. Medical Image Anal. 95: 103162 (2024) - [j89]Pablo Morales-Álvarez, Arne Schmidt, José Miguel Hernández-Lobato, Rafael Molina:
Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images. Pattern Recognit. 146: 110057 (2024) - [j88]Xinyi Wu, Santiago López-Tapia, Xijun Wang, Rafael Molina, Aggelos K. Katsaggelos:
Real-Time Lightweight Video Super-Resolution With RRED-Based Perceptual Constraint. IEEE Trans. Circuits Syst. Video Technol. 34(10): 10310-10325 (2024) - [j87]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Attention Based on Gaussian Processes for Deep Multiple Instance Learning. IEEE Trans. Neural Networks Learn. Syst. 35(8): 10909-10922 (2024) - [c133]Francisco M. Castro-Macías, Fernando Pérez-Bueno, Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Blind Color Deconvolution and Classification of Histological Images Using the Hyperbolic Secant Prior. ISBI 2024: 1-5 - [i18]Xijun Wang, Santiago López-Tapia, Alice Lucas, Xinyi Wu, Rafael Molina, Aggelos K. Katsaggelos:
A General Method to Incorporate Spatial Information into Loss Functions for GAN-based Super-resolution Models. CoRR abs/2403.10589 (2024) - [i17]Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection. CoRR abs/2403.14829 (2024) - [i16]Arne Schmidt, Pablo Morales-Álvarez, Lee A. D. Cooper, Lee A. Newberg, Andinet Enquobahrie, Aggelos K. Katsaggelos, Rafael Molina:
Focused Active Learning for Histopathological Image Classification. CoRR abs/2404.04663 (2024) - [i15]Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Sm: enhanced localization in Multiple Instance Learning for medical imaging classification. CoRR abs/2410.03276 (2024) - 2023
- [j86]Miguel López-Pérez, Pablo Morales-Álvarez, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos:
Deep Gaussian Processes for Classification With Multiple Noisy Annotators. Application to Breast Cancer Tissue Classification. IEEE Access 11: 6922-6934 (2023) - [j85]Rocío del Amor, Jose Pérez-Cano, Miguel López-Pérez, Liria Terradez, José Aneiros-Fernández, Sandra Morales, Javier Mateos, Rafael Molina, Valery Naranjo:
Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset. Artif. Intell. Medicine 145: 102686 (2023) - [j84]Santiago López-Tapia, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Learning Moore-Penrose based residuals for robust non-blind image deconvolution. Digit. Signal Process. 142: 104193 (2023) - [j83]Pablo Ruiz, Pablo Morales-Álvarez, Scott Coughlin, Rafael Molina, Aggelos K. Katsaggelos:
Probabilistic fusion of crowds and experts for the search of gravitational waves. Knowl. Based Syst. 261: 110183 (2023) - [c132]Fernando Pérez-Bueno, Kjersti Engan, Rafael Molina:
A Robust BKSVD Method for Blind Color Deconvolution and Blood Detection on H &E Histological Images. AIME 2023: 207-217 - [c131]Miguel López-Pérez, Pablo Morales-Álvarez, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos:
Crowdsourcing Segmentation of Histopathological Images Using Annotations Provided by Medical Students. AIME 2023: 245-249 - [c130]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation. ICCV 2023: 21040-21049 - [c129]Shuowen Yang, Fernando Pérez-Bueno, Francisco M. Castro-Macías, Rafael Molina, Aggelos K. Katsaggelos:
Deep Bayesian Blind Color Deconvolution of Histological Images. ICIP 2023: 710-714 - [c128]Santiago López-Tapia, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Deep Robust Image Restoration Using the Moore-Penrose Blur Inverse. ICIP 2023: 775-779 - [c127]Yunan Wu, Francisco M. Castro-Macías, Pablo Morales-Álvarez, Rafael Molina, Aggelos K. Katsaggelos:
Smooth Attention for Deep Multiple Instance Learning: Application to CT Intracranial Hemorrhage Detection. MICCAI (5) 2023: 327-337 - [d1]Fernando Pérez-Bueno, Rafael Molina Soriano:
Practicas Jupyter para Extracción de Carácteristicas en Imágenes (Master DATCOM 21/22). Zenodo, 2023 - [i14]Fernando Pérez-Bueno, Luz García, Gabriel Maciá-Fernández, Rafael Molina:
Leveraging a Probabilistic PCA Model to Understand the Multivariate Statistical Network Monitoring Framework for Network Security Anomaly Detection. CoRR abs/2302.01759 (2023) - [i13]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning. CoRR abs/2302.04061 (2023) - [i12]Yunan Wu, Francisco M. Castro-Macías, Pablo Morales-Álvarez, Rafael Molina, Aggelos K. Katsaggelos:
Smooth Attention for Deep Multiple Instance Learning: Application to CT Intracranial Hemorrhage Detection. CoRR abs/2307.09457 (2023) - [i11]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation. CoRR abs/2307.11397 (2023) - [i10]Pablo Morales-Álvarez, Arne Schmidt, José Miguel Hernández-Lobato, Rafael Molina:
Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images. CoRR abs/2310.19359 (2023) - 2022
- [j82]Arne Schmidt, Julio Silva-Rodríguez, Rafael Molina, Valery Naranjo:
Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning. IEEE Access 10: 9763-9773 (2022) - [j81]Neel Kanwal, Fernando Pérez-Bueno, Arne Schmidt, Kjersti Engan, Rafael Molina:
The Devil is in the Details: Whole Slide Image Acquisition and Processing for Artifacts Detection, Color Variation, and Data Augmentation: A Review. IEEE Access 10: 58821-58844 (2022) - [j80]Julio Silva-Rodríguez, Arne Schmidt, María Á. Sales, Rafael Molina, Valery Naranjo:
Proportion constrained weakly supervised histopathology image classification. Comput. Biol. Medicine 147: 105714 (2022) - [j79]Fernando Pérez-Bueno, Juan G. Serra, Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification. Comput. Medical Imaging Graph. 97: 102048 (2022) - [j78]Miguel López-Pérez, Arne Schmidt, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Deep Gaussian processes for multiple instance learning: Application to CT intracranial hemorrhage detection. Comput. Methods Programs Biomed. 219: 106783 (2022) - [j77]Pablo Morales-Álvarez, Pablo Ruiz, Scott Coughlin, Rafael Molina, Aggelos K. Katsaggelos:
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO. IEEE Trans. Pattern Anal. Mach. Intell. 44(3): 1534-1551 (2022) - [j76]Fernando Pérez-Bueno, Luz García, Gabriel Maciá-Fernández, Rafael Molina:
Leveraging a Probabilistic PCA Model to Understand the Multivariate Statistical Network Monitoring Framework for Network Security Anomaly Detection. IEEE/ACM Trans. Netw. 30(3): 1217-1229 (2022) - 2021
- [j75]Fernando Pérez-Bueno, Miguel Vega, María Á. Sales, José Aneiros-Fernández, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Blind color deconvolution, normalization, and classification of histological images using general super Gaussian priors and Bayesian inference. Comput. Methods Programs Biomed. 211: 106453 (2021) - [j74]Santiago López-Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Deep learning approaches to inverse problems in imaging: Past, present and future. Digit. Signal Process. 119: 103285 (2021) - [j73]Miguel López-Pérez, Luz García, M. Carmen Benítez, Rafael Molina:
A Contribution to Deep Learning Approaches for Automatic Classification of Volcano-Seismic Events: Deep Gaussian Processes. IEEE Trans. Geosci. Remote. Sens. 59(5): 3875-3890 (2021) - [c126]Pablo Morales-Alvarez, Daniel Hernández-Lobato, Rafael Molina, José Miguel Hernández-Lobato:
Activation-level uncertainty in deep neural networks. ICLR 2021 - [c125]Yunan Wu, Arne Schmidt, Enrique Hernández-Sánchez, Rafael Molina, Aggelos K. Katsaggelos:
Combining Attention-Based Multiple Instance Learning and Gaussian Processes for CT Hemorrhage Detection. MICCAI (2) 2021: 582-591 - [i9]Daniel Heestermans Svendsen, Pablo Morales-Alvarez, Ana Belen Ruescas, Rafael Molina, Gustau Camps-Valls:
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion. CoRR abs/2104.10638 (2021) - [i8]Julio Silva-Rodríguez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
Going Deeper through the Gleason Scoring Scale: An Automatic end-to-end System for Histology Prostate Grading and Cribriform Pattern Detection. CoRR abs/2105.10490 (2021) - 2020
- [j72]Julio Silva-Rodríguez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Comput. Methods Programs Biomed. 195: 105637 (2020) - [j71]Fernando Pérez-Bueno, Miguel López-Pérez, Miguel Vega, Javier Mateos, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
A TV-based image processing framework for blind color deconvolution and classification of histological images. Digit. Signal Process. 101: 102727 (2020) - [j70]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
A single video super-resolution GAN for multiple downsampling operators based on pseudo-inverse image formation models. Digit. Signal Process. 104: 102801 (2020) - [j69]Fernando Pérez-Bueno, Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors. Sensors 20(18): 5308 (2020) - [j68]Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Blind Color Deconvolution of Histopathological Images. IEEE Trans. Image Process. 29: 2026-2036 (2020) - [j67]Xu Zhou, Rafael Molina, Yi Ma, Tianfu Wang, Dong Ni:
Parameter-Free Gaussian PSF Model for Extended Depth of Field in Brightfield Microscopy. IEEE Trans. Image Process. 29: 3227-3238 (2020) - [c124]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
Gated Recurrent Networks for Video Super Resolution. EUSIPCO 2020: 700-704 - [c123]Fernando Pérez-Bueno, Miguel Vega, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Fully Automatic Blind Color Deconvolution of Histological Images Using Super Gaussians. EUSIPCO 2020: 1254-1258 - [c122]Fernando Pérez-Bueno, Miguel Vega, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Super Gaussian Priors for Blind Color Deconvolution of Histological Images. ICIP 2020: 3010-3014 - [i7]Daniel Heestermans Svendsen, Pablo Morales-Álvarez, Rafael Molina, Gustau Camps-Valls:
Deep Gaussian Processes for geophysical parameter retrieval. CoRR abs/2012.12099 (2020)
2010 – 2019
- 2019
- [j66]Ángel E. Esteban, Miguel López-Pérez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes. Comput. Methods Programs Biomed. 178: 303-317 (2019) - [j65]Juan G. Serra, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational EM method for blur estimation using the spike-and-slab image prior. Digit. Signal Process. 88: 116-129 (2019) - [j64]Pablo Morales-Alvarez, Pablo Ruiz, Raúl Santos-Rodríguez, Rafael Molina, Aggelos K. Katsaggelos:
Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 52: 110-127 (2019) - [j63]Pablo Ruiz, Pablo Morales-Alvarez, Rafael Molina, Aggelos K. Katsaggelos:
Learning from crowds with variational Gaussian processes. Pattern Recognit. 88: 298-311 (2019) - [j62]Santiago López-Tapia, Rafael Molina, Nicolás Pérez de la Blanca:
Deep CNNs for Object Detection Using Passive Millimeter Sensors. IEEE Trans. Circuits Syst. Video Technol. 29(9): 2580-2589 (2019) - [j61]Alice Lucas, Santiago Lopez Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution. IEEE Trans. Image Process. 28(7): 3312-3327 (2019) - [c121]Santiago Lopez Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
Multiple-Degradation Video Super-Resolution with Direct Inversion of the Low-Resolution Formation Model. EUSIPCO 2019: 1-5 - [c120]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayes Color Deconvolution with a Total Variation Prior. EUSIPCO 2019: 1-5 - [c119]Xijun Wang, Alice Lucas, Santiago Lopez Tapia, Xinyi Wu, Rafael Molina, Aggelos K. Katsaggelos:
A Composite Discriminator for Generative Adversarial Network based Video Super-Resolution. EUSIPCO 2019: 1-5 - [c118]Xinyi Wu, Alice Lucas, Santiago López-Tapia, Xijun Wang, Yul Hee Kim, Rafael Molina, Aggelos K. Katsaggelos:
Semantic Prior Based Generative Adversarial Network for Video Super-Resolution. EUSIPCO 2019: 1-5 - [c117]Xijun Wang, Alice Lucas, Santiago Lopez Tapia, Xinyi Wu, Rafael Molina, Aggelos K. Katsaggelos:
Spatially Adaptive Losses for Video Super-resolution with GANs. ICASSP 2019: 1697-1701 - [c116]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
Gan-Based Video Super-Resolution With Direct Regularized Inversion of the Low-Resolution Formation Model. ICIP 2019: 2886-2890 - [c115]Alice Lucas, Santiago López-Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Efficient Fine-Tuning of Neural Networks for Artifact Removal in Deep Learning for Inverse Imaging Problems. ICIP 2019: 3591-3595 - [c114]Miguel López-Pérez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
Classifying Prostate Histological Images Using Deep Gaussian Processes on a New Optical Density Granulometry-Based Descriptor. IDEAL (1) 2019: 39-46 - [i6]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
A Single Video Super-Resolution GAN for Multiple Downsampling Operators based on Pseudo-Inverse Image Formation Models. CoRR abs/1907.01399 (2019) - [i5]Pablo Morales-Alvarez, Pablo Ruiz, Scott Coughlin, Rafael Molina, Aggelos K. Katsaggelos:
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO. CoRR abs/1911.01915 (2019) - [i4]Alice Lucas, Santiago Lopez Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Self-Supervised Fine-tuning for Image Enhancement of Super-Resolution Deep Neural Networks. CoRR abs/1912.12879 (2019) - 2018
- [j60]Salvador Villena, Miguel Vega, Javier Mateos, Duska Rosenberg, Fionn Murtagh, Rafael Molina, Aggelos K. Katsaggelos:
Image super-resolution for outdoor digital forensics. Usability and legal aspects. Comput. Ind. 98: 34-47 (2018) - [j59]Santiago Lopez Tapia, Rafael Molina, Nicolas Pérez de la Blanca:
Using machine learning to detect and localize concealed objects in passive millimeter-wave images. Eng. Appl. Artif. Intell. 67: 81-90 (2018) - [j58]Neda Rohani, Pablo Ruiz, Rafael Molina, Aggelos K. Katsaggelos:
Variational Gaussian process for multisensor classification problems. Pattern Recognit. Lett. 116: 80-87 (2018) - [j57]Alice Lucas, Michael Iliadis, Rafael Molina, Aggelos K. Katsaggelos:
Using Deep Neural Networks for Inverse Problems in Imaging: Beyond Analytical Methods. IEEE Signal Process. Mag. 35(1): 20-36 (2018) - [j56]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls:
Remote Sensing Image Classification With Large-Scale Gaussian Processes. IEEE Trans. Geosci. Remote. Sens. 56(2): 1103-1114 (2018) - [c113]Adrián Colomer, Pablo Ruiz, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Hard Exudate Detection Using Local Texture Analysis and Gaussian Processes. ICIAR 2018: 639-649 - [c112]Alice Lucas, Aggelos K. Katsaggelos, Santiago Lopez Tapia, Rafael Molina:
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution. ICIP 2018: 51-55 - [c111]Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Blind Color Deconvolution of Histopathological Images Using a Variational Bayesian Approach. ICIP 2018: 983-987 - [c110]Daniel Heestermans Svendsen, Pablo Morales-Alvarez, Rafael Molina, Gustau Camps-Valls:
Deep Gaussian Processes for Geophysical Parameter Retrieval. IGARSS 2018: 6175-6178 - [c109]Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Fully Automated Blind Color Deconvolution of Histopathological Images. MICCAI (2) 2018: 183-191 - [i3]Alice Lucas, Santiago Lopez Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution. CoRR abs/1806.05764 (2018) - 2017
- [j55]Xu Zhou, Miguel Vega, Fugen Zhou, Rafael Molina, Aggelos K. Katsaggelos:
Fast Bayesian blind deconvolution with Huber Super Gaussian priors. Digit. Signal Process. 60: 122-133 (2017) - [j54]Michael Iliadis, Haohong Wang, Rafael Molina, Aggelos K. Katsaggelos:
Robust and Low-Rank Representation for Fast Face Identification With Occlusions. IEEE Trans. Image Process. 26(5): 2203-2218 (2017) - [j53]Juan G. Serra, Matteo Testa, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian K-SVD Using Fast Variational Inference. IEEE Trans. Image Process. 26(7): 3344-3359 (2017) - [c108]Juan G. Serra, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Parameter estimation in spike and slab variational inference for blind image deconvolution. EUSIPCO 2017: 1495-1499 - [c107]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls, Aggelos K. Katsaggelos:
Passive millimeter wave image classification with large scale Gaussian processes. ICIP 2017: 370-374 - [c106]Juan G. Serra, Salvador Villena, Rafael Molina, Aggelos K. Katsaggelos:
Greedy Bayesian double sparsity dictionary learning. ICIP 2017: 1935-1939 - [c105]Juan G. Serra, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Spike and slab variational inference for blind image deconvolution. ICIP 2017: 3765-3769 - [c104]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls:
Efficient remote sensing image classification with Gaussian processes and Fourier features. IGARSS 2017: 2227-2230 - [i2]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls:
Remote Sensing Image Classification with Large Scale Gaussian Processes. CoRR abs/1710.00575 (2017) - 2016
- [j52]Wael AlSaafin, Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Compressive sensing super resolution from multiple observations with application to passive millimeter wave images. Digit. Signal Process. 50: 180-190 (2016) - [j51]Pablo Ruiz Matarán, Rafael Molina, Aggelos K. Katsaggelos:
Joint Data Filtering and Labeling Using Gaussian Processes and Alternating Direction Method of Multipliers. IEEE Trans. Image Process. 25(7): 3059-3072 (2016) - [c103]Wael Saafin, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Compressed sensing super resolution of color images. EUSIPCO 2016: 1563-1567 - [c102]Emre Besler, Pablo Ruiz, Rafael Molina, Aggelos K. Katsaggelos:
Classification of multiple annotator data using variational Gaussian process inference. EUSIPCO 2016: 2025-2029 - [c101]Santiago Lopez Tapia, Rafael Molina, Nicolas Pérez de la Blanca:
Detection and localization of objects in Passive Millimeter Wave Images. EUSIPCO 2016: 2101-2105 - [c100]Juan G. Serra, Pablo Ruiz, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian logistic regression with sparse general representation prior for multispectral image classification. ICIP 2016: 1893-1897 - [c99]Javier Mateos, Antonio López, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Multiframe blind deconvolution of passive millimeter wave images using variational dirichlet blur kernel estimation. ICIP 2016: 2678-2682 - [c98]Pablo Ruiz, Emre Besler, Rafael Molina, Aggelos K. Katsaggelos:
Variational Gaussian process for missing label crowdsourcing classification problems. MLSP 2016: 1-6 - [i1]Michael Iliadis, Haohong Wang, Rafael Molina, Aggelos K. Katsaggelos:
Robust and Low-Rank Representation for Fast Face Identification with Occlusions. CoRR abs/1605.02266 (2016) - 2015
- [j50]Pablo Ruiz, Xu Zhou, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Blind Image Deconvolution: A review. Digit. Signal Process. 47: 116-127 (2015) - [j49]Aggelos K. Katsaggelos, Sara Bahaadini, Rafael Molina:
Audiovisual Fusion: Challenges and New Approaches. Proc. IEEE 103(9): 1635-1653 (2015) - [j48]Xu Zhou, Javier Mateos, Fugen Zhou, Rafael Molina, Aggelos K. Katsaggelos:
Variational Dirichlet Blur Kernel Estimation. IEEE Trans. Image Process. 24(12): 5127-5139 (2015) - [j47]Zhaofu Chen, Rafael Molina, Aggelos K. Katsaggelos:
Robust Recovery of Temporally Smooth Signals From Under-Determined Multiple Measurements. IEEE Trans. Signal Process. 63(7): 1779-1791 (2015) - [c97]