


Остановите войну!
for scientists:


default search action
Daniel D. Lee
Daniel Dongyuel Lee
Person information

- affiliation: University of Pennsylvania, Department of Electrical and Systems Engineering
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i45]Niko A. Grupen, Michael Hanlon, Alexis Hao, Daniel D. Lee, Bart Selman:
Policy-Value Alignment and Robustness in Search-based Multi-Agent Learning. CoRR abs/2301.11857 (2023) - [i44]Ziyun Wang, Fernando Cladera Ojeda, Anthony Bisulco, Daewon Lee, Camillo J. Taylor, Kostas Daniilidis, M. Ani Hsieh, Daniel D. Lee, Volkan Isler:
EV-Catcher: High-Speed Object Catching Using Low-latency Event-based Neural Networks. CoRR abs/2304.07200 (2023) - [i43]Chanwoo Chun, Daniel D. Lee:
Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks. CoRR abs/2305.10550 (2023) - 2022
- [j25]Xiaoran Fan
, Daewon Lee, Larry D. Jackel, Richard E. Howard, Daniel Dongyuel Lee, Volkan Isler
:
Enabling Low-Cost Full Surface Tactile Skin for Human Robot Interaction. IEEE Robotics Autom. Lett. 7(2): 1800-1807 (2022) - [j24]Ziyun Wang
, Fernando Cladera Ojeda
, Anthony Bisulco
, Daewon Lee, Camillo J. Taylor
, Kostas Daniilidis
, M. Ani Hsieh
, Daniel D. Lee
, Volkan Isler
:
EV-Catcher: High-Speed Object Catching Using Low-Latency Event-Based Neural Networks. IEEE Robotics Autom. Lett. 7(4): 8737-8744 (2022) - [j23]J. Jon Ryu
, Shouvik Ganguly
, Younghan Kim
, Yung-Kyun Noh
, Daniel D. Lee:
Nearest Neighbor Density Functional Estimation From Inverse Laplace Transform. IEEE Trans. Inf. Theory 68(6): 3511-3551 (2022) - [c130]Niko A. Grupen, Bart Selman, Daniel D. Lee:
Cooperative Multi-Agent Fairness and Equivariant Policies. AAAI 2022: 9350-9359 - [c129]Niko A. Grupen, Daniel D. Lee, Bart Selman:
Multi-Agent Curricula and Emergent Implicit Signaling. AAMAS 2022: 553-561 - [c128]Nikhil Chavan Dafle, Sergiy Popovych, Shubham Agrawal, Daniel D. Lee, Volkan Isler:
Simultaneous Object Reconstruction and Grasp Prediction using a Camera-centric Object Shell Representation. IROS 2022: 1396-1403 - [c127]Travers Rhodes, Tapomayukh Bhattacharjee, Daniel D. Lee:
Learning from Demonstration using a Curvature Regularized Variational Auto-Encoder (CurvVAE). IROS 2022: 10795-10800 - [i42]Weishun Zhong, Ben Sorscher, Daniel D. Lee, Haim Sompolinsky:
A theory of learning with constrained weight-distribution. CoRR abs/2206.08933 (2022) - 2021
- [j22]Yuan Chen
, Colin Prepscius, Daewon Lee, Daniel D. Lee:
Tactile Velocity Estimation for Controlled In-Grasp Sliding. IEEE Robotics Autom. Lett. 6(2): 1614-1621 (2021) - [c126]Ziyun Wang, Eric A. Mitchell, Volkan Isler, Daniel D. Lee:
Geodesic-HOF: 3D Reconstruction Without Cutting Corners. AAAI 2021: 2844-2851 - [c125]Heejin Jeong, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Deep Reinforcement Learning for Active Target Tracking. ICRA 2021: 1825-1831 - [c124]Daniel Yang, Tarik Tosun, Benjamin Eisner, Volkan Isler, Daniel D. Lee:
Robotic Grasping through Combined Image-Based Grasp Proposal and 3D Reconstruction. ICRA 2021: 6350-6356 - [c123]Jinwook Huh, Volkan Isler, Daniel D. Lee:
Cost-to-Go Function Generating Networks for High Dimensional Motion Planning. ICRA 2021: 8480-8486 - [c122]Minghan Wei, Daewon Lee, Volkan Isler, Daniel D. Lee:
Occupancy Map Inpainting for Online Robot Navigation. ICRA 2021: 8551-8557 - [c121]Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler, Daniel D. Lee:
Fast Motion Understanding with Spatiotemporal Neural Networks and Dynamic Vision Sensors. ICRA 2021: 14098-14104 - [c120]Xiaoran Fan, Riley Simmons-Edler, Daewon Lee, Larry D. Jackel, Richard E. Howard, Daniel D. Lee:
AuraSense: Robot Collision Avoidance by Full Surface Proximity Detection. IROS 2021: 1763-1770 - [c119]Jinwook Huh, Daniel D. Lee, Volkan Isler:
Learning Continuous Cost-to-Go Functions for Non-holonomic Systems. IROS 2021: 5772-5779 - [c118]Travers Rhodes, Daniel D. Lee:
Local Disentanglement in Variational Auto-Encoders Using Jacobian $L_1$ Regularization. NeurIPS 2021: 22708-22719 - [i41]Jinwook Huh, Daniel D. Lee, Volkan Isler:
Learning Continuous Cost-to-Go Functions for Non-holonomic Systems. CoRR abs/2103.11168 (2021) - [i40]Travers Rhodes
, Daniel D. Lee:
Local Disentanglement in Variational Auto-Encoders Using Jacobian L1 Regularization. CoRR abs/2106.02923 (2021) - [i39]Niko A. Grupen, Bart Selman, Daniel D. Lee:
Fairness for Cooperative Multi-Agent Learning with Equivariant Policies. CoRR abs/2106.05727 (2021) - [i38]Niko A. Grupen, Daniel D. Lee, Bart Selman:
Curriculum-Driven Multi-Agent Learning and the Role of Implicit Communication in Teamwork. CoRR abs/2106.11156 (2021) - [i37]Xiaoran Fan, Riley Simmons-Edler, Daewon Lee, Larry D. Jackel, Richard E. Howard, Daniel D. Lee:
AuraSense: Robot Collision Avoidance by Full Surface Proximity Detection. CoRR abs/2108.04867 (2021) - [i36]Nikhil Chavan Dafle, Sergiy Popovych, Shubham Agrawal, Daniel D. Lee, Volkan Isler:
Object Shell Reconstruction: Camera-centric Object Representation for Robotic Grasping. CoRR abs/2109.06837 (2021) - 2020
- [c117]Daniel R. Kepple, Daewon Lee, Colin Prepsius, Volkan Isler, Il Memming Park, Daniel D. Lee:
Jointly Learning Visual Motion and Confidence from Local Patches in Event Cameras. ECCV (6) 2020: 500-516 - [c116]Ziyun Wang, Volkan Isler, Daniel D. Lee:
Surface Hof: Surface Reconstruction From A Single Image Using Higher Order Function Networks. ICIP 2020: 2666-2670 - [c115]Fernando Cladera Ojeda, Anthony Bisulco, Daniel R. Kepple, Volkan Isler, Daniel D. Lee:
On-Device Event Filtering with Binary Neural Networks for Pedestrian Detection Using Neuromorphic Vision Sensors. ICIP 2020: 3084-3088 - [c114]Eric Mitchell, Selim Engin, Volkan Isler, Daniel D. Lee:
Higher-Order Function Networks for Learning Composable 3D Object Representations. ICLR 2020 - [c113]Selim Engin, Eric Mitchell, Daewon Lee, Volkan Isler, Daniel D. Lee:
Higher Order Function Networks for View Planning and Multi-View Reconstruction. ICRA 2020: 11486-11492 - [c112]Riley Simmons-Edler, Ben Eisner, Daniel Yang
, Anthony Bisulco, Eric Mitchell, H. Sebastian Seung, Daniel D. Lee:
Reward Prediction Error as an Exploration Objective in Deep RL. IJCAI 2020: 2816-2823 - [c111]Xiaoran Fan, Daewon Lee, Yuan Chen, Colin Prepscius, Volkan Isler, Larry D. Jackel, H. Sebastian Seung, Daniel D. Lee:
Acoustic Collision Detection and Localization for Robot Manipulators. IROS 2020: 9529-9536 - [c110]Jinwook Huh, Galen Xing, Ziyun Wang, Volkan Isler, Daniel D. Lee:
Learning to Generate Cost-to-Go Functions for Efficient Motion Planning. ISER 2020: 555-565 - [c109]Anthony Bisulco, Fernando Cladera Ojeda
, Volkan Isler, Daniel Dongyuel Lee:
Near-Chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian Detection. ISVLSI 2020: 234-239 - [i35]Tarik Tosun, Daniel Yang, Ben Eisner, Volkan Isler, Daniel D. Lee:
Robotic Grasping through Combined image-Based Grasp Proposal and 3D Reconstruction. CoRR abs/2003.01649 (2020) - [i34]Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler, Daniel D. Lee:
Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian Detection. CoRR abs/2004.01689 (2020) - [i33]Ziyun Wang, Eric A. Mitchell, Volkan Isler, Daniel D. Lee:
Geodesic-HOF: 3D Reconstruction Without Cutting Corners. CoRR abs/2006.07981 (2020) - [i32]Heejin Jeong, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Learning to Track Dynamic Targets in Partially Known Environments. CoRR abs/2006.10190 (2020) - [i31]Jinwook Huh, Galen Xing, Ziyun Wang, Volkan Isler, Daniel D. Lee:
Learning to Generate Cost-to-Go Functions for Efficient Motion Planning. CoRR abs/2010.14597 (2020) - [i30]Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler, Daniel D. Lee:
Fast Motion Understanding with Spatiotemporal Neural Networks and Dynamic Vision Sensors. CoRR abs/2011.09427 (2020) - [i29]Niko A. Grupen, Daniel D. Lee, Bart Selman:
Low-Bandwidth Communication Emerges Naturally in Multi-Agent Learning Systems. CoRR abs/2011.14890 (2020) - [i28]Jinwook Huh, Volkan Isler, Daniel D. Lee:
Cost-to-Go Function Generating Networks for High Dimensional Motion Planning. CoRR abs/2012.06023 (2020)
2010 – 2019
- 2019
- [j21]Kanghoon Lee, Geon-hyeong Kim
, Pedro A. Ortega, Daniel D. Lee, Kee-Eung Kim:
Bayesian optimistic Kullback-Leibler exploration. Mach. Learn. 108(5): 765-783 (2019) - [j20]Minoru Asada, Peter Stone, Manuela Veloso, Daniel D. Lee, Daniele Nardi:
RoboCup: A Treasure Trove of Rich Diversity for Research Issues and Interdisciplinary Connections [TC Spotlight]. IEEE Robotics Autom. Mag. 26(3): 99-102 (2019) - [j19]Mark Eisen
, Clark Zhang, Luiz F. O. Chamon
, Daniel D. Lee, Alejandro Ribeiro
:
Learning Optimal Resource Allocations in Wireless Systems. IEEE Trans. Signal Process. 67(10): 2775-2790 (2019) - [c108]Mark Eisen, Clark Zhang, Luiz F. O. Chamon, Daniel D. Lee, Alejandro Ribeiro
:
Dual Domain Learning of Optimal Resource Allocations in Wireless Systems. ICASSP 2019: 4729-4733 - [c107]Bhoram Lee, Clark Zhang, Zonghao Huang, Daniel D. Lee:
Online Continuous Mapping using Gaussian Process Implicit Surfaces. ICRA 2019: 6884-6890 - [c106]Heejin Jeong, Clark Zhang, George J. Pappas, Daniel D. Lee:
Assumed Density Filtering Q-learning. IJCAI 2019: 2607-2613 - [c105]Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Learning Q-network for Active Information Acquisition. IROS 2019: 6822-6827 - [c104]Tarik Tosun, Eric Mitchell, Ben Eisner, Jinwook Huh, Bhoram Lee, Daewon Lee, Volkan Isler, H. Sebastian Seung, Daniel D. Lee:
Pixels to Plans: Learning Non-Prehensile Manipulation by Imitating a Planner. IROS 2019: 7431-7438 - [c103]Jinwook Huh, Ömür Arslan, Daniel D. Lee:
Probabilistically Safe Corridors to Guide Sampling-Based Motion Planning. ISRR 2019: 311-327 - [i27]Jinwook Huh, Omur Arslan, Daniel D. Lee:
Probabilistically Safe Corridors to Guide Sampling-Based Motion Planning. CoRR abs/1901.00101 (2019) - [i26]Riley Simmons-Edler, Ben Eisner, Eric Mitchell, H. Sebastian Seung, Daniel D. Lee:
Q-Learning for Continuous Actions with Cross-Entropy Guided Policies. CoRR abs/1903.10605 (2019) - [i25]Tarik Tosun, Eric Mitchell, Ben Eisner, Jinwook Huh, Bhoram Lee, Daewon Lee, Volkan Isler, H. Sebastian Seung, Daniel D. Lee:
Pixels to Plans: Learning Non-Prehensile Manipulation by Imitating a Planner. CoRR abs/1904.03260 (2019) - [i24]Riley Simmons-Edler, Ben Eisner, Eric Mitchell, H. Sebastian Seung, Daniel D. Lee:
QXplore: Q-learning Exploration by Maximizing Temporal Difference Error. CoRR abs/1906.08189 (2019) - [i23]Eric Mitchell, Kazim Selim Engin, Volkan Isler, Daniel D. Lee:
Higher-Order Function Networks for Learning Composable 3D Object Representations. CoRR abs/1907.10388 (2019) - [i22]Selim Engin, Eric Mitchell, Daewon Lee, Volkan Isler, Daniel D. Lee:
Higher Order Function Networks for View Planning and Multi-View Reconstruction. CoRR abs/1910.02066 (2019) - [i21]Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Learning Q-network for Active Information Acquisition. CoRR abs/1910.10754 (2019) - [i20]Ziyun Wang, Volkan Isler, Daniel D. Lee:
Surface HOF: Surface Reconstruction from a Single Image Using Higher Order Function Networks. CoRR abs/1912.08852 (2019) - 2018
- [j18]Yung-Kyun Noh, Masashi Sugiyama
, Song Liu, Marthinus Christoffel du Plessis, Frank Chongwoo Park, Daniel D. Lee:
Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence. Neural Comput. 30(7) (2018) - [j17]SueYeon Chung
, Uri Cohen, Haim Sompolinsky, Daniel D. Lee:
Learning Data Manifolds with a Cutting Plane Method. Neural Comput. 30(10) (2018) - [j16]Yung-Kyun Noh
, Jihun Hamm, Frank Chongwoo Park, Byoung-Tak Zhang, Daniel D. Lee:
Fluid Dynamic Models for Bhattacharyya-Based Discriminant Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 40(1): 92-105 (2018) - [j15]Yung-Kyun Noh, Byoung-Tak Zhang, Daniel D. Lee:
Generative Local Metric Learning for Nearest Neighbor Classification. IEEE Trans. Pattern Anal. Mach. Intell. 40(1): 106-118 (2018) - [j14]Jinwook Huh
, Daniel D. Lee:
Efficient Sampling With Q-Learning to Guide Rapidly Exploring Random Trees. IEEE Robotics Autom. Lett. 3(4): 3868-3875 (2018) - [c102]Christopher W. Lynn, Daniel D. Lee:
Maximizing Activity in Ising Networks via the TAP Approximation. AAAI 2018: 679-686 - [c101]Heejin Jeong, Daniel D. Lee:
Bayesian Q-learning with Assumed Density Filtering. AAAI Spring Symposia 2018 - [c100]Mark Eisen, Clark Zhang, Luiz F. O. Chamon, Daniel D. Lee, Alejandro Ribeiro
:
Online Deep Learning in Wireless Communication Systems. ACSSC 2018: 1289-1293 - [c99]Steven W. Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D. Lee, Vijay Kumar, George J. Pappas, Manfred Morari:
Approximating Explicit Model Predictive Control Using Constrained Neural Networks. ACC 2018: 1520-1527 - [c98]Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, Daniel D. Lee:
Memory Augmented Control Networks. ICLR (Poster) 2018 - [c97]Jinwook Huh, Bhoram Lee, Daniel D. Lee:
Constrained Sampling-Based Planning for Grasping and Manipulation. ICRA 2018: 223-230 - [c96]Xiang Deng, Daniel D. Lee:
Artificial Invariant Subspace for Humanoid Robot Balancing in Locomotion. IROS 2018: 185-192 - [c95]Clark Zhang, Jinwook Huh, Daniel D. Lee:
Learning Implicit Sampling Distributions for Motion Planning. IROS 2018: 3654-3661 - [c94]Marcell Missura, Daniel D. Lee, Maren Bennewitz:
Minimal Construct: Efficient Shortest Path Finding for Mobile Robots in Polygonal Maps. IROS 2018: 7918-7923 - [e4]Daniel D. Lee, Alexander Steen, Toby Walsh:
GCAI-2018, 4th Global Conference on Artificial Intelligence, Luxembourg, September 18-21, 2018. EPiC Series in Computing 55, EasyChair 2018 [contents] - [i19]Christopher W. Lynn, Daniel D. Lee:
Maximizing Activity in Ising Networks via the TAP Approximation. CoRR abs/1803.00110 (2018) - [i18]Christopher W. Lynn, Lia Papadopoulos, Daniel D. Lee, Danielle S. Bassett:
Surges of collective human activity emerge from simple pairwise correlations. CoRR abs/1803.00118 (2018) - [i17]Shouvik Ganguly, Jongha Ryu, Young-Han Kim, Yung-Kyun Noh, Daniel D. Lee:
Nearest neighbor density functional estimation based on inverse Laplace transform. CoRR abs/1805.08342 (2018) - [i16]Arbaaz Khan, Clark Zhang, Daniel D. Lee, Vijay Kumar, Alejandro Ribeiro:
Scalable Centralized Deep Multi-Agent Reinforcement Learning via Policy Gradients. CoRR abs/1805.08776 (2018) - [i15]Clark Zhang, Jinwook Huh, Daniel D. Lee:
Learning Implicit Sampling Distributions for Motion Planning. CoRR abs/1806.01968 (2018) - [i14]Mark Eisen, Clark Zhang, Luiz F. O. Chamon, Daniel D. Lee, Alejandro Ribeiro:
Learning Optimal Resource Allocations in Wireless Systems. CoRR abs/1807.08088 (2018) - [i13]Ty Nguyen, Tolga Özaslan, Ian D. Miller, James Keller, Giuseppe Loianno, Camillo J. Taylor, Daniel D. Lee, Vijay Kumar, Joseph H. Harwood, Jennifer M. Wozencraft:
U-Net for MAV-based Penstock Inspection: an Investigation of Focal Loss in Multi-class Segmentation for Corrosion Identification. CoRR abs/1809.06576 (2018) - 2017
- [j13]Stephen G. McGill, Seung-Joon Yi, Hak Yi, Min Sung Ahn, Sanghyun Cho, Kevin Liu, Daniel Sun, Bhoram Lee, Heejin Jeong, Jinwook Huh, Dennis W. Hong, Daniel D. Lee:
Team THOR's Entry in the DARPA Robotics Challenge Finals 2015. J. Field Robotics 34(4): 775-801 (2017) - [c93]Jinwook Huh, Bhoram Lee, Daniel D. Lee:
Adaptive motion planning with high-dimensional mixture models. ICRA 2017: 3740-3747 - [c92]Marcell Missura, Daniel D. Lee, Oskar von Stryk, Maren Bennewitz:
The synchronized holonomic model: A framework for efficient generation of motion. IROS 2017: 2076-2082 - [c91]Xiang Deng, Fei Miao, Daniel D. Lee:
Artificial invariant subspace with potential functions for humanoid robot balancing. IROS 2017: 4538-4545 - [c90]Bhoram Lee, Daniel D. Lee:
Self-supervised online learning of appearance for 3D tracking. IROS 2017: 4930-4937 - [c89]Yung-Kyun Noh, Masashi Sugiyama, Kee-Eung Kim, Frank C. Park, Daniel D. Lee:
Generative Local Metric Learning for Kernel Regression. NIPS 2017: 2452-2462 - [e3]Sven Behnke, Raymond Sheh, Sanem Sariel, Daniel D. Lee:
RoboCup 2016: Robot World Cup XX [Leipzig, Germany, June 30 - July 4, 2016]. Lecture Notes in Computer Science 9776, Springer 2017, ISBN 978-3-319-68791-9 [contents] - [i12]Steven W. Chen, Nikolay Atanasov, Arbaaz Khan, Konstantinos Karydis, Daniel D. Lee, Vijay Kumar:
Neural Network Memory Architectures for Autonomous Robot Navigation. CoRR abs/1705.08049 (2017) - [i11]SueYeon Chung, Uri Cohen, Haim Sompolinsky, Daniel D. Lee:
Learning Data Manifolds with a Cutting Plane Method. CoRR abs/1705.09944 (2017) - [i10]Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Daniel D. Lee, Vijay Kumar:
End-to-End Navigation in Unknown Environments using Neural Networks. CoRR abs/1707.07385 (2017) - [i9]Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, Daniel D. Lee:
Memory Augmented Control Networks. CoRR abs/1709.05706 (2017) - [i8]SueYeon Chung, Daniel D. Lee, Haim Sompolinsky:
Classification and Geometry of General Perceptual Manifolds. CoRR abs/1710.06487 (2017) - [i7]Heejin Jeong, Daniel D. Lee:
Bayesian Q-learning with Assumed Density Filtering. CoRR abs/1712.03333 (2017) - 2016
- [j12]Seung-Joon Yi, Byoung-Tak Zhang, Dennis W. Hong, Daniel D. Lee:
Whole-Body Balancing Walk Controller for Position Controlled Humanoid Robots. Int. J. Humanoid Robotics 13(1): 1650011:1-1650011:28 (2016) - [j11]Zhuo Wang, Alan A. Stocker
, Daniel D. Lee:
Efficient Neural Codes That Minimize Lp Reconstruction Error. Neural Comput. 28(12): 2656-2686 (2016) - [c88]Heejin Jeong, Daniel D. Lee:
Learning Complex Stand-Up Motion for Humanoid Robots. AAAI 2016: 4218-4219 - [c87]Seung-Joon Yi, Daniel D. Lee:
Dynamic heel-strike toe-off walking controller for full-size modular humanoid robots. Humanoids 2016: 395-400 - [c86]Jinwook Huh, Daniel D. Lee:
Learning high-dimensional Mixture Models for fast collision detection in Rapidly-Exploring Random Trees. ICRA 2016: 63-69 - [c85]Stephen G. McGill, Seung-Joon Yi, Daniel D. Lee:
Low dimensional human preference tracking for motion optimization. ICRA 2016: 2867-2872 - [c84]Bhoram Lee, Daniel D. Lee:
Learning anisotropic ICP (LA-ICP) for robust and efficient 3D registration. ICRA 2016: 5040-5045 - [c83]Teakgyu Hong, Jongmin Lee, Kee-Eung Kim, Pedro A. Ortega, Daniel D. Lee:
Bayesian Reinforcement Learning with Behavioral Feedback. IJCAI 2016: 1571-1577 - [c82]Heejin Jeong, Daniel D. Lee:
Efficient learning of stand-up motion for humanoid robots with bilateral symmetry. IROS 2016: 1544-1549 - [c81]Bhoram Lee, Daniel D. Lee:
Online learning of visibility and appearance for object pose estimation. IROS 2016: 2792-2798 - [c80]Seung-Joon Yi, Daniel D. Lee:
Heel and toe lifting walk controller for resource constrained humanoid robots. IROS 2016: 5452-5458 - [c79]Christopher Lynn, Daniel D. Lee:
Maximizing Influence in an Ising Network: A Mean-Field Optimal Solution. NIPS 2016: 2487-2495 - [c78]Zhuo Wang, Xue-Xin Wei, Alan A. Stocker, Daniel D. Lee:
Efficient Neural Codes under Metabolic Constraints. NIPS 2016: 4619-4627 - [c77]Yongbo Qian, Daniel D. Lee:
Adaptive Field Detection and Localization in Robot Soccer. RoboCup 2016: 218-229 - [p2]Jan Peters, Daniel D. Lee, Jens Kober
, Duy Nguyen-Tuong, J. Andrew Bagnell, Stefan Schaal:
Robot Learning. Springer Handbook of Robotics, 2nd Ed. 2016: 357-398 - [e2]Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, Roman Garnett:
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. 2016 [contents] - [i6]Christopher Lynn, Daniel D. Lee:
Maximizing Influence in an Ising Network: A Mean-Field Optimal Solution. CoRR abs/1608.06850 (2016) - 2015
- [j10]Yung-Kyun Noh, Daniel D. Lee, Kyung-Ae Yang, Cheong-Tag Kim
, Byoung-Tak Zhang:
Molecular learning with DNA kernel machines. Biosyst. 137: 73-83 (2015) - [j9]Seung-Joon Yi, Stephen G. McGill, Larry Vadakedathu, Qin He, Inyong Ha, Jeakweon Han, Hyunjong Song, Michael Rouleau, Byoung-Tak Zhang, Dennis W. Hong, Mark Yim, Daniel D. Lee:
Team THOR's Entry in the DARPA Robotics Challenge Trials 2013. J. Field Robotics 32(3): 315-335 (2015) - [c76]Pedro A. Ortega, Kee-Eung Kim, Daniel D. Lee:
Reactive bandits with attitude. AISTATS 2015 - [c75]Pedro A. Ortega, Daniel D. Lee, Alan A. Stocker:
Causal reasoning in a prediction task with hidden causes. CogSci 2015 - [c74]Seung-Joon Yi, Dennis W. Hong, Daniel D. Lee:
Heel and toe lifting walk controller for traversing uneven terrain. Humanoids 2015: 325-330 - [c73]Stephen G. McGill, Seung-Joon Yi, Daniel D. Lee:
Team THOR's adaptive autonomy for disaster response humanoids. Humanoids 2015: 453-460 - [c72]