


default search action
Hans Pabst
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c12]Evangelos Georganas, Dhiraj D. Kalamkar, Kirill Voronin, Abhisek Kundu, Antonio Noack, Hans Pabst, Alexander Breuer, Alexander Heinecke:
Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures. IPDPS 2024: 950-963 - [i9]Renato Golin, Lorenzo Chelini, Adam Siemieniuk, Kavitha Madhu, Niranjan Hasabnis, Hans Pabst, Evangelos Georganas, Alexander Heinecke:
Towards a high-performance AI compiler with upstream MLIR. CoRR abs/2404.15204 (2024) - 2023
- [i8]Evangelos Georganas, Dhiraj D. Kalamkar, Kirill Voronin, Antonio Noack, Hans Pabst, Alexander Breuer, Alexander Heinecke:
Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures. CoRR abs/2304.12576 (2023) - 2022
- [j2]Evangelos Georganas, Dhiraj D. Kalamkar, Sasikanth Avancha, Menachem Adelman, Deepti Aggarwal, Cristina Anderson, Alexander Breuer, Jeremy Bruestle, Narendra Chaudhary, Abhisek Kundu, Denise Kutnick, Frank Laub, Md. Vasimuddin, Sanchit Misra, Ramanarayan Mohanty, Hans Pabst, Brian Retford, Barukh Ziv, Alexander Heinecke:
Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning and HPC Workloads. Frontiers Appl. Math. Stat. 8: 826269 (2022) - [j1]Robert Schade
, Tobias Kenter
, Hossam Elgabarty, Michael Lass
, Ole Schütt
, Alfio Lazzaro, Hans Pabst, Stephan Mohr
, Jürg Hutter, Thomas D. Kühne
, Christian Plessl
:
Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms. Parallel Comput. 111: 102920 (2022) - 2021
- [c11]Florian Rehm, Sofia Vallecorsa, Vikram A. Saletore, Hans Pabst, Adel Chaibi, Valeriu Codreanu, Kerstin Borras, Dirk Krücker
:
Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case. ICPRAM 2021: 251-258 - [c10]Evangelos Georganas, Dhiraj D. Kalamkar, Sasikanth Avancha, Menachem Adelman, Cristina Anderson, Alexander Breuer, Jeremy Bruestle, Narendra Chaudhary, Abhisek Kundu, Denise Kutnick, Frank Laub, Md. Vasimuddin, Sanchit Misra, Ramanarayan Mohanty, Hans Pabst, Barukh Ziv, Alexander Heinecke:
Tensor processing primitives: a programming abstraction for efficiency and portability in deep learning workloads. SC 2021: 14 - [i7]Florian Rehm, Sofia Vallecorsa, Vikram A. Saletore, Hans Pabst, Adel Chaibi, Valeriu Codreanu, Kerstin Borras, Dirk Krücker:
Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case. CoRR abs/2103.10142 (2021) - [i6]Evangelos Georganas, Dhiraj D. Kalamkar, Sasikanth Avancha, Menachem Adelman, Cristina Anderson, Alexander Breuer, Narendra Chaudhary, Abhisek Kundu, Md. Vasimuddin, Sanchit Misra, Ramanarayan Mohanty, Hans Pabst, Barukh Ziv, Alexander Heinecke:
Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads. CoRR abs/2104.05755 (2021) - [i5]Robert Schade
, Tobias Kenter, Hossam Elgabarty, Michael Lass, Ole Schütt, Alfio Lazzaro, Hans Pabst, Stephan Mohr, Jürg Hutter, Thomas D. Kühne, Christian Plessl:
Enabling Electronic Structure-Based Ab-Initio Molecular Dynamics Simulations with Hundreds of Millions of Atoms. CoRR abs/2104.08245 (2021) - 2020
- [c9]Evangelos Georganas, Kunal Banerjee, Dhiraj D. Kalamkar, Sasikanth Avancha, Anand Venkat, Michael J. Anderson, Greg Henry, Hans Pabst, Alexander Heinecke:
Harnessing Deep Learning via a Single Building Block. IPDPS 2020: 222-233
2010 – 2019
- 2019
- [i4]Evangelos Georganas, Kunal Banerjee, Dhiraj D. Kalamkar, Sasikanth Avancha, Anand Venkat, Michael J. Anderson, Greg Henry, Hans Pabst, Alexander Heinecke:
High-Performance Deep Learning via a Single Building Block. CoRR abs/1906.06440 (2019) - 2018
- [c8]Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj D. Kalamkar, Greg Henry, Hans Pabst, Alexander Heinecke:
Anatomy of high-performance deep learning convolutions on SIMD architectures. SC 2018: 66:1-66:12 - [c7]Sofia Vallecorsa, Federico Carminati, Gulrukh Khattak
, Damian Podareanu
, Valeriu Codreanu, Vikram A. Saletore, Hans Pabst:
Distributed Training of Generative Adversarial Networks for Fast Detector Simulation. ISC Workshops 2018: 487-503 - [i3]Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano
, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier M. Duarte
, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert
, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir V. Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemyslaw Karpinski, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin
, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark S. Neubauer, Harvey B. Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel N. Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas
, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Andrew Stewart, Bob Stienen, Ian Stockdale, Giles Chatham Strong
, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata:
Machine Learning in High Energy Physics Community White Paper. CoRR abs/1807.02876 (2018) - [i2]Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj D. Kalamkar, Greg Henry, Hans Pabst, Alexander Heinecke:
Anatomy Of High-Performance Deep Learning Convolutions On SIMD Architectures. CoRR abs/1808.05567 (2018) - 2017
- [c6]Iain Bethune, Andreas Glöss, Jürg Hutter, Alfio Lazzaro, Hans Pabst, Fiona Reid:
Porting of the DBCSR Library for Sparse Matrix-Matrix Multiplications to Intel Xeon Phi Systems. PARCO 2017: 47-56 - [i1]Iain Bethune, Andreas Glöss, Jürg Hutter, Alfio Lazzaro, Hans Pabst, Fiona Reid:
Porting of the DBCSR library for Sparse Matrix-Matrix Multiplications to Intel Xeon Phi systems. CoRR abs/1708.03604 (2017) - 2016
- [c5]Alexander Heinecke, Greg Henry, Maxwell Hutchinson, Hans Pabst:
LIBXSMM: accelerating small matrix multiplications by runtime code generation. SC 2016: 981-991 - [c4]Maxwell Hutchinson, Alexander Heinecke, Hans Pabst, Greg Henry, Matteo Parsani
, David E. Keyes
:
Efficiency of High Order Spectral Element Methods on Petascale Architectures. ISC 2016: 449-466 - 2012
- [c3]Hans Pabst, Bev Bachmayer, Michael Klemm:
Performance of a Structure-Detecting SpMV Using the CSR Matrix Representation. ISPDC 2012: 3-10 - 2011
- [c2]Alexander Heinecke, Michael Klemm, Hans Pabst, Dirk Pflüger:
Towards High-Performance Implementations of a Custom HPC Kernel Using ® Array Building Blocks. Facing the Multicore-Challenge 2011: 36-47 - 2010
- [c1]Ariel Bernal, Ashok Thirumurthi, Hans Pabst, Tyler Nowicki, Michael McCool:
Multigrid optical flow for deformable medical volume registration. SIGGRAPH Talks 2010
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint