Остановите войну!
for scientists:
default search action
Guido Sanguinetti
Person information
- affiliation: SISSA: Trieste, Italy
- affiliation: University of Edinburgh, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [c37]Riccardo Giuseppe Margiotta, Sebastian Goldt, Guido Sanguinetti:
Attacks on Online Learners: a Teacher-Student Analysis. NeurIPS 2023 - [c36]Viplove Arora, Daniele Irto, Sebastian Goldt, Guido Sanguinetti:
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity. UAI 2023: 88-98 - [i14]Riccardo Giuseppe Margiotta, Sebastian Goldt, Guido Sanguinetti:
Attacks on Online Learners: a Teacher-Student Analysis. CoRR abs/2305.11132 (2023) - [i13]Viplove Arora, Daniele Irto, Sebastian Goldt, Guido Sanguinetti:
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity. CoRR abs/2306.12190 (2023) - 2022
- [j42]Christos Maniatis, Catalina A. Vallejos, Guido Sanguinetti:
SCRaPL: A Bayesian hierarchical framework for detecting technical associates in single cell multiomics data. PLoS Comput. Biol. 18(6) (2022) - [c35]Svitlana Braichenko, Ramon Grima, Guido Sanguinetti:
Bayesian Learning of Effective Chemical Master Equations in Crowded Intracellular Conditions. CMSB 2022: 239-258 - [c34]Ginevra Carbone, Luca Bortolussi, Guido Sanguinetti:
Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks. IJCNN 2022: 1-8 - [i12]Luca Bortolussi, Ginevra Carbone, Luca Laurenti, Andrea Patane, Guido Sanguinetti, Matthew Wicker:
On the Robustness of Bayesian Neural Networks to Adversarial Attacks. CoRR abs/2207.06154 (2022) - 2021
- [c33]Ginevra Carbone, Guido Sanguinetti, Luca Bortolussi:
Random Projections for Improved Adversarial Robustness. IJCNN 2021: 1-7 - [i11]Ginevra Carbone, Guido Sanguinetti, Luca Bortolussi:
Random Projections for Improved Adversarial Robustness. CoRR abs/2102.09230 (2021) - [i10]Ginevra Carbone, Guido Sanguinetti, Luca Bortolussi:
Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks. CoRR abs/2102.11010 (2021) - 2020
- [j41]Giulio Caravagna, Guido Sanguinetti, Trevor A. Graham, Andrea Sottoriva:
The MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-genome sequencing data. BMC Bioinform. 21(1): 531 (2020) - [c32]Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patané, Luca Bortolussi, Guido Sanguinetti:
Robustness of Bayesian Neural Networks to Gradient-Based Attacks. NeurIPS 2020 - [e4]Guido Sanguinetti, David Safránek:
Proceedings of SASB 2018, the 7th International Workshop on Static Analysis and Systems Biology, University of Edinburgh, September 7, 2016. Electronic Notes in Theoretical Computer Science 335, Elsevier 2020 [contents] - [i9]Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca Bortolussi, Guido Sanguinetti:
Robustness of Bayesian Neural Networks to Gradient-Based Attacks. CoRR abs/2002.04359 (2020)
2010 – 2019
- 2019
- [j40]Michael Everett Rule, David Schnoerr, Matthias H. Hennig, Guido Sanguinetti:
Neural field models for latent state inference: Application to large-scale neuronal recordings. PLoS Comput. Biol. 15(11) (2019) - [j39]Michalis Michaelides, Jane Hillston, Guido Sanguinetti:
Statistical Abstraction for Multi-scale Spatio-temporal Systems. ACM Trans. Model. Comput. Simul. 29(4): 22:1-22:29 (2019) - [c31]Ankit Gupta, Mustafa Khammash, Guido Sanguinetti:
Bayesian Parameter Estimation for Stochastic Reaction Networks from Steady-State Observations. CMSB 2019: 342-346 - [c30]Kaan Öcal, Ramon Grima, Guido Sanguinetti:
Wasserstein Distances for Estimating Parameters in Stochastic Reaction Networks. CMSB 2019: 347-351 - [e3]Luca Bortolussi, Guido Sanguinetti:
Computational Methods in Systems Biology - 17th International Conference, CMSB 2019, Trieste, Italy, September 18-20, 2019, Proceedings. Lecture Notes in Computer Science 11773, Springer 2019, ISBN 978-3-030-31303-6 [contents] - [i8]Michalis Michaelides, Jane Hillston, Guido Sanguinetti:
Geometric fluid approximation for general continuous-time Markov chains. CoRR abs/1901.11417 (2019) - 2018
- [j38]Chantriolnt-Andreas Kapourani, Guido Sanguinetti:
BPRMeth: a flexible Bioconductor package for modelling methylation profiles. Bioinform. 34(14): 2485-2486 (2018) - [j37]Michael Everett Rule, Guido Sanguinetti:
Autoregressive Point Processes as Latent State-Space Models: A Moment-Closure Approach to Fluctuations and Autocorrelations. Neural Comput. 30(10) (2018) - [j36]Anastasis Georgoulas, Jane Hillston, Guido Sanguinetti:
ProPPA: Probabilistic Programming for Stochastic Dynamical Systems. ACM Trans. Model. Comput. Simul. 28(1): 3:1-3:23 (2018) - [c29]Dimitrios Milios, Guido Sanguinetti, David Schnoerr:
Probabilistic Model Checking for Continuous-Time Markov Chains via Sequential Bayesian Inference. QEST 2018: 289-305 - [c28]Luca Bortolussi, Guido Sanguinetti, Simone Silvetti:
Bayesian Statistical parametric Verification and synthesis by Machine Learning. WSC 2018: 381-394 - [c27]Guido Sanguinetti, David Safránek:
Preface. SASB 2018: 1-2 - [i7]Luca Bortolussi, Guido Sanguinetti:
Intrinsic Geometric Vulnerability of High-Dimensional Artificial Intelligence. CoRR abs/1811.03571 (2018) - 2017
- [j35]Ezio Bartocci, Luca Bortolussi, Tomás Brázdil, Dimitrios Milios, Guido Sanguinetti:
Policy learning in continuous-time Markov decision processes using Gaussian Processes. Perform. Evaluation 116: 84-100 (2017) - [j34]Anastasis Georgoulas, Jane Hillston, Guido Sanguinetti:
Unbiased Bayesian inference for population Markov jump processes via random truncations. Stat. Comput. 27(4): 991-1002 (2017) - [c26]Michalis Michaelides, Jane Hillston, Guido Sanguinetti:
Statistical Abstraction for Multi-scale Spatio-Temporal Systems. QEST 2017: 243-258 - [i6]Giulio Caravagna, Daniele Ramazzotti, Guido Sanguinetti:
On learning the structure of Bayesian Networks and submodular function maximization. CoRR abs/1706.02386 (2017) - [i5]Dimitrios Milios, Guido Sanguinetti, David Schnoerr:
Probabilistic Model Checking for Continuous Time Markov Chains via Sequential Bayesian Inference. CoRR abs/1711.01863 (2017) - 2016
- [j33]Chantriolnt-Andreas Kapourani, Guido Sanguinetti:
Higher order methylation features for clustering and prediction in epigenomic studies. Bioinform. 32(17): 405-412 (2016) - [j32]Yuanhua Huang, Guido Sanguinetti:
Statistical modeling of isoform splicing dynamics from RNA-seq time series data. Bioinform. 32(19): 2965-2972 (2016) - [j31]Saulius Lukauskas, Roberto Visintainer, Guido Sanguinetti, Gabriele Beate Schweikert:
DGW: an exploratory data analysis tool for clustering and visualisation of epigenomic marks. BMC Bioinform. 17(S-16): 53-63 (2016) - [j30]Luca Bortolussi, Dimitrios Milios, Guido Sanguinetti:
Smoothed model checking for uncertain Continuous-Time Markov Chains. Inf. Comput. 247: 235-253 (2016) - [c25]Giulio Caravagna, Luca Bortolussi, Guido Sanguinetti:
Matching Models Across Abstraction Levels with Gaussian Processes. CMSB 2016: 49-66 - [c24]Michalis Michaelides, Dimitrios Milios, Jane Hillston, Guido Sanguinetti:
Property-Driven State-Space Coarsening for Continuous Time Markov Chains. QEST 2016: 3-18 - [c23]Ezio Bartocci, Luca Bortolussi, Tomás Brázdil, Dimitrios Milios, Guido Sanguinetti:
Policy Learning for Time-Bounded Reachability in Continuous-Time Markov Decision Processes via Doubly-Stochastic Gradient Ascent. QEST 2016: 244-259 - [i4]Ezio Bartocci, Luca Bortolussi, Tomás Brázdil, Dimitrios Milios, Guido Sanguinetti:
Policy learning for time-bounded reachability in Continuous-Time Markov Decision Processes via doubly-stochastic gradient ascent. CoRR abs/1605.09703 (2016) - [i3]Michalis Michaelides, Dimitrios Milios, Jane Hillston, Guido Sanguinetti:
Property-driven State-Space Coarsening for Continuous Time Markov Chains. CoRR abs/1606.01111 (2016) - 2015
- [j29]Tom R. Mayo, Gabriele Beate Schweikert, Guido Sanguinetti:
M3D: a kernel-based test for spatially correlated changes in methylation profiles. Bioinform. 31(6): 809-816 (2015) - [j28]Vân Anh Huynh-Thu, Guido Sanguinetti:
Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinform. 31(10): 1614-1622 (2015) - [j27]Daniel Trejo-Baños, Andrew J. Millar, Guido Sanguinetti:
A Bayesian approach for structure learning in oscillating regulatory networks. Bioinform. 31(22): 3617-3624 (2015) - [j26]Luca Bortolussi, Guido Sanguinetti:
Learning and Designing Stochastic Processes from Logical Constraints. Log. Methods Comput. Sci. 11(2) (2015) - [j25]Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti:
System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587: 3-25 (2015) - [c22]Daniel Trejo-Baños, Andrew J. Millar, Guido Sanguinetti:
Experimental Design for Inference over the A. thaliana Circadian Clock Network. CMSB 2015: 28-39 - [c21]Luca Bortolussi, Dimitrios Milios, Guido Sanguinetti:
Efficient Stochastic Simulation of Systems with Multiple Time Scales via Statistical Abstraction. CMSB 2015: 40-51 - [c20]Ezio Bartocci, Luca Bortolussi, Dimitrios Milios, Laura Nenzi, Guido Sanguinetti:
Studying Emergent Behaviours in Morphogenesis Using Signal Spatio-Temporal Logic. HSB 2015: 156-172 - [c19]Luca Bortolussi, Dimitrios Milios, Guido Sanguinetti:
U-Check: Model Checking and Parameter Synthesis Under Uncertainty. QEST 2015: 89-104 - [c18]Luca Bortolussi, Dimitrios Milios, Guido Sanguinetti:
Machine Learning Methods in Statistical Model Checking and System Design - Tutorial. RV 2015: 323-341 - 2014
- [c17]Ezio Bartocci, Luca Bortolussi, Guido Sanguinetti:
Data-Driven Statistical Learning of Temporal Logic Properties. FORMATS 2014: 23-37 - [c16]Sara Bufo, Ezio Bartocci, Guido Sanguinetti, Massimo Borelli, Umberto Lucangelo, Luca Bortolussi:
Temporal Logic Based Monitoring of Assisted Ventilation in Intensive Care Patients. ISoLA (2) 2014: 391-403 - [c15]Luca Bortolussi, Guido Sanguinetti:
A Statistical Approach for Computing Reachability of Non-linear and Stochastic Dynamical Systems. QEST 2014: 41-56 - [c14]Anastasis Georgoulas, Jane Hillston, Dimitrios Milios, Guido Sanguinetti:
Probabilistic Programming Process Algebra. QEST 2014: 249-264 - [i2]Luca Bortolussi, Guido Sanguinetti:
Smoothed Model Checking for Uncertain Continuous Time Markov Chains. CoRR abs/1402.1450 (2014) - 2013
- [b1]Andrew Zammit-Mangion, Michael Dewar, Visakan Kadirkamanathan, Anaid Flesken, Guido Sanguinetti:
Modeling Conflict Dynamics with Spatio-temporal Data. Springer Briefs in Applied Sciences and Technology, Springer 2013, ISBN 978-3-319-01037-3, pp. I-VIII, 1-74 - [j24]Andrea Ocone, Andrew J. Millar, Guido Sanguinetti:
Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics. Bioinform. 29(7): 910-916 (2013) - [j23]Grigorios Skolidis, Guido Sanguinetti:
Semisupervised Multitask Learning With Gaussian Processes. IEEE Trans. Neural Networks Learn. Syst. 24(12): 2101-2112 (2013) - [c13]Anastasis Georgoulas, Jane Hillston, Guido Sanguinetti:
ABC-Fun: A Probabilistic Programming Language for Biology. CMSB 2013: 150-163 - [c12]Botond Cseke, Manfred Opper, Guido Sanguinetti:
Approximate inference in latent Gaussian-Markov models from continuous time observations. NIPS 2013: 971-979 - [c11]Luca Bortolussi, Guido Sanguinetti:
Learning and Designing Stochastic Processes from Logical Constraints. QEST 2013: 89-105 - [c10]Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti:
On the Robustness of Temporal Properties for Stochastic Models. HSB 2013: 3-19 - [c9]Andrea Ocone, Guido Sanguinetti:
A stochastic hybrid model of a biological filter. HAS 2013: 100-108 - [i1]Ezio Bartocci, Luca Bortolussi, Guido Sanguinetti:
Learning Temporal Logical Properties Discriminating ECG models of Cardiac Arrhytmias. CoRR abs/1312.7523 (2013) - 2012
- [j22]Grigorios Skolidis, Katja Hansen, Guido Sanguinetti, Matthias Rupp:
Multi-task learning for pKa prediction. J. Comput. Aided Mol. Des. 26(7): 883-895 (2012) - [j21]Grigorios Skolidis, Guido Sanguinetti:
A Case Study on Meta-Generalising: A Gaussian Processes Approach. J. Mach. Learn. Res. 13: 691-721 (2012) - [j20]Andrew Zammit-Mangion, Guido Sanguinetti, Visakan Kadirkamanathan:
Variational Estimation in Spatiotemporal Systems From Continuous and Point-Process Observations. IEEE Trans. Signal Process. 60(7): 3449-3459 (2012) - [c8]Anastasis Georgoulas, Allan Clark, Andrea Ocone, Stephen Gilmore, Guido Sanguinetti:
A subsystems approach for parameter estimation of ODE models of hybrid systems. HSB 2012: 30-41 - 2011
- [j19]Hafiz Muhammad Shahzad Asif, Guido Sanguinetti:
Large-scale learning of combinatorial transcriptional dynamics from gene expression. Bioinform. 27(9): 1277-1283 (2011) - [j18]Andrea Ocone, Guido Sanguinetti:
Reconstructing transcription factor activities in hierarchical transcription network motifs. Bioinform. 27(20): 2873-2879 (2011) - [j17]Maurizio Filippone, Guido Sanguinetti:
Approximate inference of the bandwidth in multivariate kernel density estimation. Comput. Stat. Data Anal. 55(12): 3104-3122 (2011) - [j16]Andrew Zammit-Mangion, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan, Guido Sanguinetti:
Online Variational Inference for State-Space Models with Point-Process Observations. Neural Comput. 23(8): 1967-1999 (2011) - [j15]Grigorios Skolidis, Guido Sanguinetti:
Bayesian Multitask Classification With Gaussian Process Priors. IEEE Trans. Neural Networks 22(12): 2011-2021 (2011) - [j14]Maurizio Filippone, Guido Sanguinetti:
A Perturbative Approach to Novelty Detection in Autoregressive Models. IEEE Trans. Signal Process. 59(3): 1027-1036 (2011) - [c7]Florian Stimberg, Manfred Opper, Guido Sanguinetti, Andreas Ruttor:
Inference in continuous-time change-point models. NIPS 2011: 2717-2725 - 2010
- [j13]Manfred Opper, Guido Sanguinetti:
Learning combinatorial transcriptional dynamics from gene expression data. Bioinform. 26(13): 1623-1629 (2010) - [j12]Hafiz Muhammad Shahzad Asif, Matthew D. Rolfe, Jeffrey Green, Neil D. Lawrence, Magnus Rattray, Guido Sanguinetti:
TFInfer: a tool for probabilistic inference of transcription factor activities. Bioinform. 26(20): 2635-2636 (2010) - [j11]Michael Dewar, Visakan Kadirkamanathan, Manfred Opper, Guido Sanguinetti:
Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster. BMC Syst. Biol. 4: 21 (2010) - [j10]Maurizio Filippone, Guido Sanguinetti:
Information theoretic novelty detection. Pattern Recognit. 43(3): 805-814 (2010) - [c6]Manfred Opper, Andreas Ruttor, Guido Sanguinetti:
Approximate inference in continuous time Gaussian-Jump processes. NIPS 2010: 1831-1839 - [p1]Andreas Ruttor, Guido Sanguinetti, Manfred Opper:
Approximate Inference for Stochastic Reaction processes. Learning and Inference in Computational Systems Biology 2010: 277-296 - [e2]Neil D. Lawrence, Mark A. Girolami, Magnus Rattray, Guido Sanguinetti:
Learning and Inference in Computational Systems Biology. Computational molecular biology, MIT Press 2010, ISBN 978-0-262-01386-4 [contents]
2000 – 2009
- 2009
- [j9]Guido Sanguinetti, Andreas Ruttor, Manfred Opper, Cédric Archambeau:
Switching regulatory models of cellular stress response. Bioinform. 25(10): 1280-1286 (2009) - [j8]Richard D. Pearson, Xuejun Liu, Guido Sanguinetti, Marta Milo, Neil D. Lawrence, Magnus Rattray:
puma: a Bioconductor package for propagating uncertainty in microarray analysis. BMC Bioinform. 10 (2009) - [c5]Paola Lecca, Alida Palmisano, Corrado Priami, Guido Sanguinetti:
A new probabilistic generative model of parameter inference in biochemical networks. SAC 2009: 758-765 - [e1]Visakan Kadirkamanathan, Guido Sanguinetti, Mark A. Girolami, Mahesan Niranjan, Josselin Noirel:
Pattern Recognition in Bioinformatics, 4th IAPR International Conference, PRIB 2009, Sheffield, UK, September 7-9, 2009. Proceedings. Lecture Notes in Computer Science 5780, Springer 2009, ISBN 978-3-642-04030-6 [contents] - 2008
- [j7]Guido Sanguinetti, Josselin Noirel, Phillip C. Wright:
MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinform. 24(8): 1078-1084 (2008) - [j6]Josselin Noirel, Guido Sanguinetti, Phillip C. Wright:
Identifying differentially expressed subnetworks with MMG. Bioinform. 24(23): 2792-2793 (2008) - [j5]Guido Sanguinetti:
Dimensionality Reduction of Clustered Data Sets. IEEE Trans. Pattern Anal. Mach. Intell. 30(3): 535-540 (2008) - 2007
- [c4]Manfred Opper, Guido Sanguinetti:
Variational inference for Markov jump processes. NIPS 2007: 1105-1112 - 2006
- [j4]Magnus Rattray, Xuejun Liu, Guido Sanguinetti, Marta Milo, Neil D. Lawrence:
Propagating uncertainty in microarray data analysis. Briefings Bioinform. 7(1): 37-47 (2006) - [j3]Guido Sanguinetti, Magnus Rattray, Neil D. Lawrence:
A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinform. 22(14): 1753-1759 (2006) - [j2]Guido Sanguinetti, Neil D. Lawrence, Magnus Rattray:
Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinform. 22(22): 2775-2781 (2006) - [c3]Guido Sanguinetti, Magnus Rattray, Neil D. Lawrence:
Identifying Submodules of Cellular Regulatory Networks. CMSB 2006: 155-168 - [c2]Guido Sanguinetti, Neil D. Lawrence:
Missing Data in Kernel PCA. ECML 2006: 751-758 - [c1]Neil D. Lawrence, Guido Sanguinetti, Magnus Rattray:
Modelling transcriptional regulation using Gaussian Processes. NIPS 2006: 785-792 - 2005
- [j1]Guido Sanguinetti, Marta Milo, Magnus Rattray, Neil D. Lawrence:
Accounting for probe-level noise in principal component analysis of microarray data. Bioinform. 21(19): 3748-3754 (2005)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-25 05:41 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint