default search action
Emre Neftci
Emre O. Neftci – Emre Ozgur Neftci
Person information
- affiliation: University of California, Irvine, Department of Computer Science, CA, USA
- affiliation: University of California, San Diego, Insitute of Neural Computation, CA, USA
- affiliation (PhD): ETH Zurich, Institute of Neuroinformatics, Switzerland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j18]Fernando M. Quintana, Fernando Perez-Peña, Pedro L. Galindo, Emre O. Neftci, Elisabetta Chicca, Lyes Khacef:
ETLP: event-based three-factor local plasticity for online learning with neuromorphic hardware. Neuromorph. Comput. Eng. 4(3): 34006 (2024) - [j17]Guoqi Li, Emre Neftci, Rong Xiao, Pablo Lanillos, Kaushik Roy:
Guest Editorial: Special Issue on Advancing Machine Intelligence With Neuromorphic Computing. IEEE Trans. Cogn. Dev. Syst. 16(5): 1623-1625 (2024) - [c48]Nicholas Alonso, Jeffrey L. Krichmar, Emre Neftci:
Understanding and Improving Optimization in Predictive Coding Networks. AAAI 2024: 10812-10820 - [c47]Jan Finkbeiner, Thomas Gmeinder, Mark Pupilli, Alexander Titterton, Emre Neftci:
Harnessing Manycore Processors with Distributed Memory for Accelerated Training of Sparse and Recurrent Models. AAAI 2024: 11996-12005 - [c46]Zhenming Yu, Ming-Jay Yang, Jan Finkbeiner, Sebastian Siegel, John Paul Strachan, Emre Neftci:
The Ouroboros of Memristors: Neural Networks Facilitating Memristor Programming. AICAS 2024: 398-402 - [c45]Karthik Charan Raghunathan, Yigit Demirag, Emre Neftci, Melika Payvand:
Hardware-aware Few-shot Learning on a Memristor-based Small-world Architecture. NICE 2024: 1-8 - [i46]Zhenming Yu, Ming-Jay Yang, Jan Finkbeiner, Sebastian Siegel, John Paul Strachan, Emre Neftci:
The Ouroboros of Memristors: Neural Networks Facilitating Memristor Programming. CoRR abs/2403.06712 (2024) - [i45]Zhenming Yu, Stephan Menzel, John Paul Strachan, Emre Neftci:
Integration of Physics-Derived Memristor Models with Machine Learning Frameworks. CoRR abs/2403.06746 (2024) - [i44]Soikat Hasan Ahmed, Jan Finkbeiner, Emre Neftci:
A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention. CoRR abs/2403.10173 (2024) - [i43]Madison Cotteret, Hugh Greatorex, Alpha Renner, Junren Chen, Emre Neftci, Huaqiang Wu, Giacomo Indiveri, Martin Ziegler, Elisabetta Chicca:
Distributed Representations Enable Robust Multi-Timescale Computation in Neuromorphic Hardware. CoRR abs/2405.01305 (2024) - [i42]Jamie Lohoff, Emre Neftci:
Optimizing Automatic Differentiation with Deep Reinforcement Learning. CoRR abs/2406.05027 (2024) - [i41]Kenneth Michael Stewart, Michael Neumeier, Sumit Bam Shrestha, Garrick Orchard, Emre Neftci:
Emulating Brain-like Rapid Learning in Neuromorphic Edge Computing. CoRR abs/2408.15800 (2024) - [i40]Jamie Lohoff, Jan Finkbeiner, Emre Neftci:
SNNAX - Spiking Neural Networks in JAX. CoRR abs/2409.02842 (2024) - [i39]Nathan Leroux, Paul-Philipp Manea, Chirag Sudarshan, Jan Finkbeiner, Sebastian Siegel, John Paul Strachan, Emre Neftci:
Analog In-Memory Computing Attention Mechanism for Fast and Energy-Efficient Large Language Models. CoRR abs/2409.19315 (2024) - [i38]Jan Finkbeiner, Emre Neftci:
On-Chip Learning via Transformer In-Context Learning. CoRR abs/2410.08711 (2024) - [i37]Paul-Philipp Manea, Nathan Leroux, Emre Neftci, John Paul Strachan:
Gain Cell-Based Analog Content Addressable Memory for Dynamic Associative tasks in AI. CoRR abs/2410.09755 (2024) - 2023
- [j16]Melika Payvand, Emre Neftci, Friedemann Zenke:
Editorial: Focus issue on machine learning for neuromorphic engineering. Neuromorph. Comput. Eng. 3(3): 30403 (2023) - [j15]Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, Jeffrey L. Krichmar:
Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization. Neural Networks 161: 228-241 (2023) - [j14]Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, Wei D. Lu:
Training Spiking Neural Networks Using Lessons From Deep Learning. Proc. IEEE 111(9): 1016-1054 (2023) - [j13]Tianqi Zhang, Justin Morris, Kenneth Michael Stewart, Hin Wai Lui, Behnam Khaleghi, Anthony Thomas, Thiago Goncalves-Marback, Baris Aksanli, Emre O. Neftci, Tajana Rosing:
HyperSpikeASIC: Accelerating Event-Based Workloads With HyperDimensional Computing and Spiking Neural Networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(11): 3997-4010 (2023) - [c44]Nathan Leroux, Jan Finkbeiner, Emre Neftci:
Online Transformers with Spiking Neurons for Fast Prosthetic Hand Control. BioCAS 2023: 1-6 - [c43]Hin Wai Lui, Eric Gallo, Emre Neftci:
Patient Privacy Protecting Physics Informed Neural Network for Cardiovascular Monitoring. BioCAS 2023: 1-5 - [c42]Jamie Lohoff, Zhenming Yu, Jan Finkbeiner, Anil Kaya, Kenneth Michael Stewart, Hin Wai Lui, Emre Neftci:
Interfacing Neuromorphic Hardware with Machine Learning Frameworks - A Review. ICONS 2023: 16:1-16:8 - [c41]Tobias Fleck, Svetlana Pavlitska, Sven Nitzsche, Brian Pachideh, Federico Nicolás Peccia, Soikat Hasan Ahmed, Svea Marie Meyer, Mathis Richter, Kevin Broertjes, Emre Neftci, Jürgen Becker, Oliver Bringmann, J. Marius Zöllner:
Low-Power Traffic Surveillance using Multiple RGB and Event Cameras: A Survey. ISC2 2023: 1-7 - [i36]Fernando M. Quintana, Fernando Perez-Peña, Pedro L. Galindo, Emre O. Neftci, Elisabetta Chicca, Lyes Khacef:
ETLP: Event-based Three-factor Local Plasticity for online learning with neuromorphic hardware. CoRR abs/2301.08281 (2023) - [i35]Nathan Leroux, Jan Finkbeiner, Emre Neftci:
Online Transformers with Spiking Neurons for Fast Prosthetic Hand Control. CoRR abs/2303.11860 (2023) - [i34]Jason Yik, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson, Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, Douwe den Blanken, Petrut Bogdan, Sander M. Bohté, Younes Bouhadjar, Sonia M. Buckley, Gert Cauwenberghs, Federico Corradi, Guido de Croon, Andreea Danielescu, Anurag Reddy Daram, Mike Davies, Yigit Demirag, Jason Eshraghian, Jeremy Forest, Steve B. Furber, Michael Furlong, Aditya Gilra, Giacomo Indiveri, Siddharth Joshi, Vedant Karia, Lyes Khacef, James C. Knight, Laura Kriener, Rajkumar Kubendran, Dhireesha Kudithipudi, Gregor Lenz, Rajit Manohar, Christian Mayr, Konstantinos P. Michmizos, Dylan R. Muir, Emre Neftci, Thomas Nowotny, Fabrizio Ottati, Ayça Özcelikkale, Noah Pacik-Nelson, Priyadarshini Panda, Pao-Sheng Sun, Melika Payvand, Christian Pehle, Mihai A. Petrovici, Christoph Posch, Alpha Renner, Yulia Sandamirskaya, Clemens JS Schaefer, André van Schaik, Johannes Schemmel, Catherine D. Schuman, Jae-sun Seo, Sumit Bam Shrestha, Manolis Sifalakis, Amos Sironi, Kenneth Michael Stewart, Terrence C. Stewart, Philipp Stratmann, Guangzhi Tang, Jonathan Timcheck, Marian Verhelst, Craig M. Vineyard, Bernhard Vogginger, Amirreza Yousefzadeh, Biyan Zhou, Fatima Tuz Zohora, Charlotte Frenkel, Vijay Janapa Reddi:
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking. CoRR abs/2304.04640 (2023) - [i33]Nick Alonso, Jeff Krichmar, Emre Neftci:
Understanding and Improving Optimization in Predictive Coding Networks. CoRR abs/2305.13562 (2023) - [i32]Dhireesha Kudithipudi, Anurag Reddy Daram, Abdullah M. Zyarah, Fatima Tuz Zohora, James B. Aimone, Angel Yanguas-Gil, Nicholas Soures, Emre Neftci, Matthew Mattina, Vincenzo Lomonaco, Clare D. Thiem, Benjamin R. Epstein:
Design Principles for Lifelong Learning AI Accelerators. CoRR abs/2310.04467 (2023) - [i31]Jan Finkbeiner, Thomas Gmeinder, Mark Pupilli, Alexander Titterton, Emre Neftci:
Harnessing Manycore Processors with Distributed Memory for Accelerated Training of Sparse and Recurrent Models. CoRR abs/2311.04386 (2023) - 2022
- [j12]Dennis V. Christensen, Regina Dittmann, Bernabé Linares-Barranco, Abu Sebastian, Manuel Le Gallo, Andrea Redaelli, Stefan Slesazeck, Thomas Mikolajick, Sabina Spiga, Stephan Menzel, Ilia Valov, Gianluca Milano, Carlo Ricciardi, Shi-Jun Liang, Feng Miao, Mario Lanza, Tyler J. Quill, Scott T. Keene, Alberto Salleo, Julie Grollier, Danijela Markovic, Alice Mizrahi, Peng Yao, J. Joshua Yang, Giacomo Indiveri, John Paul Strachan, Suman Datta, Elisa Vianello, Alexandre Valentian, Johannes Feldmann, Xuan Li, Wolfram H. P. Pernice, Harish Bhaskaran, Steve B. Furber, Emre Neftci, Franz Scherr, Wolfgang Maass, Srikanth Ramaswamy, Jonathan Tapson, Priyadarshini Panda, Youngeun Kim, Gouhei Tanaka, Simon Thorpe, Chiara Bartolozzi, Thomas A. Cleland, Christoph Posch, Shih-Chii Liu, Gabriella Panuccio, Mufti Mahmud, Arnab Neelim Mazumder, Morteza Hosseini, Tinoosh Mohsenin, Elisa Donati, Silvia Tolu, Roberto Galeazzi, Martin Ejsing Christensen, Sune Holm, Daniele Ielmini, N. Pryds:
2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2(2): 22501 (2022) - [j11]Kenneth Michael Stewart, Emre O. Neftci:
Meta-learning spiking neural networks with surrogate gradient descent. Neuromorph. Comput. Eng. 2(4): 44002 (2022) - [c40]Zhenming Yu, Stephan Menzel, John Paul Strachan, Emre Neftci:
Integration of Physics-Derived Memristor Models with Machine Learning Frameworks. IEEECONF 2022: 1142-1146 - [c39]Justin Morris, Hin Wai Lui, Kenneth Michael Stewart, Behnam Khaleghi, Anthony Thomas, Thiago Marback, Baris Aksanli, Emre Neftci, Tajana Rosing:
HyperSpike: HyperDimensional Computing for More Efficient and Robust Spiking Neural Networks. DATE 2022: 664-669 - [c38]Takashi Nagata, Jinwei Xing, Tsutomu Kumazawa, Emre Neftci:
Uncertainty Aware Model Integration on Reinforcement Learning. IJCNN 2022: 1-7 - [c37]Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Mahmut T. Kandemir, Emre Neftci, Vijaykrishnan Narayanan, Chita R. Das:
Skipper: Enabling efficient SNN training through activation-checkpointing and time-skipping. MICRO 2022: 565-581 - [c36]Kenneth Michael Stewart, Andreea Danielescu, Timothy M. Shea, Emre Neftci:
Encoding Event-Based Data With a Hybrid SNN Guided Variational Auto-encoder in Neuromorphic Hardware. NICE 2022: 88-97 - [c35]Nick Alonso, Beren Millidge, Jeffrey L. Krichmar, Emre O. Neftci:
A Theoretical Framework for Inference Learning. NeurIPS 2022 - [i30]Kenneth Michael Stewart, Emre Neftci:
Meta-learning Spiking Neural Networks with Surrogate Gradient Descent. CoRR abs/2201.10777 (2022) - [i29]Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, Jeffrey L. Krichmar:
Policy Distillation with Selective Input Gradient Regularization for Efficient Interpretability. CoRR abs/2205.08685 (2022) - [i28]Nick Alonso, Beren Millidge, Jeff Krichmar, Emre Neftci:
A Theoretical Framework for Inference Learning. CoRR abs/2206.00164 (2022) - 2021
- [j10]Friedemann Zenke, Emre O. Neftci:
Brain-Inspired Learning on Neuromorphic Substrates. Proc. IEEE 109(5): 935-950 (2021) - [c34]Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, Jeffrey L. Krichmar:
Domain Adaptation In Reinforcement Learning Via Latent Unified State Representation. AAAI 2021: 10452-10459 - [c33]Yue Yin, Emre Neftci:
Improving full-FORCE with dynamical data coupling and multilayer architecture. BioCAS 2021: 1-6 - [c32]Nicholas Alonso, Emre Neftci:
Tightening the Biological Constraints on Gradient-Based Predictive Coding. ICONS 2021: 3:1-3:9 - [c31]Hin Wai Lui, Emre Neftci:
Hessian Aware Quantization of Spiking Neural Networks. ICONS 2021: 12:1-12:5 - [i27]Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, Jeffrey L. Krichmar:
Domain Adaptation In Reinforcement Learning Via Latent Unified State Representation. CoRR abs/2102.05714 (2021) - [i26]Sourav Dutta, Georgios Detorakis, Abhishek Khanna, Benjamin Grisafe, Emre Neftci, Suman Datta:
Neural Sampling Machine with Stochastic Synapse allows Brain-like Learning and Inference. CoRR abs/2102.10477 (2021) - [i25]Kenneth Michael Stewart, Andreea Danielescu, Lazar Supic, Timothy M. Shea, Emre Neftci:
Gesture Similarity Analysis on Event Data Using a Hybrid Guided Variational Auto Encoder. CoRR abs/2104.00165 (2021) - [i24]Hin Wai Lui, Emre Neftci:
Hessian Aware Quantization of Spiking Neural Networks. CoRR abs/2104.14117 (2021) - [i23]Nick Alonso, Emre Neftci:
Tightening the Biological Constraints on Gradient-Based Predictive Coding. CoRR abs/2104.15137 (2021) - [i22]Dennis V. Christensen, Regina Dittmann, Bernabé Linares-Barranco, Abu Sebastian, Manuel Le Gallo, Andrea Redaelli, Stefan Slesazeck, Thomas Mikolajick, Sabina Spiga, Stephan Menzel, Ilia Valov, Gianluca Milano, Carlo Ricciardi, Shi-Jun Liang, Feng Miao, Mario Lanza, Tyler J. Quill, Scott T. Keene, Alberto Salleo, Julie Grollier, Danijela Markovic, Alice Mizrahi, Peng Yao, J. Joshua Yang, Giacomo Indiveri, John Paul Strachan, Suman Datta, Elisa Vianello, Alexandre Valentian, Johannes Feldmann, Xuan Li, Wolfram H. P. Pernice, Harish Bhaskaran, Emre Neftci, Srikanth Ramaswamy, Jonathan Tapson, Franz Scherr, Wolfgang Maass, Priyadarshini Panda, Youngeun Kim, Gouhei Tanaka, Simon Thorpe, Chiara Bartolozzi, Thomas A. Cleland, Christoph Posch, Shih-Chii Liu, Arnab Neelim Mazumder, Morteza Hosseini, Tinoosh Mohsenin, Elisa Donati, Silvia Tolu, Roberto Galeazzi, Martin Ejsing Christensen, Sune Holm, Daniele Ielmini, N. Pryds:
2021 Roadmap on Neuromorphic Computing and Engineering. CoRR abs/2105.05956 (2021) - [i21]Jason Kamran Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, Wei D. Lu:
Training Spiking Neural Networks Using Lessons From Deep Learning. CoRR abs/2109.12894 (2021) - 2020
- [j9]Kenneth Michael Stewart, Garrick Orchard, Sumit Bam Shrestha, Emre Neftci:
Online Few-Shot Gesture Learning on a Neuromorphic Processor. IEEE J. Emerg. Sel. Topics Circuits Syst. 10(4): 512-521 (2020) - [j8]Melika Payvand, Mohammed E. Fouda, Fadi J. Kurdahi, Ahmed M. Eltawil, Emre O. Neftci:
On-Chip Error-Triggered Learning of Multi-Layer Memristive Spiking Neural Networks. IEEE J. Emerg. Sel. Topics Circuits Syst. 10(4): 522-535 (2020) - [c30]Kenneth Michael Stewart, Garrick Orchard, Sumit Bam Shrestha, Emre Neftci:
Live Demonstration: On-chip Few-shot Learning with Surrogate Gradient Descent on a Neuromorphic Processor. AICAS 2020: 128 - [c29]Jonah Sengupta, Rajkumar Kubendran, Emre Neftci, Andreas G. Andreou:
High-Speed, Real-Time, Spike-Based Object Tracking and Path Prediction on Google Edge TPU. AICAS 2020: 134-135 - [c28]Melika Payvand, Mohammed E. Fouda, Fadi J. Kurdahi, Ahmed M. Eltawil, Emre O. Neftci:
Error-triggered Three-Factor Learning Dynamics for Crossbar Arrays. AICAS 2020: 218-222 - [c27]Kenneth Michael Stewart, Garrick Orchard, Sumit Bam Shrestha, Emre Neftci:
On-chip Few-shot Learning with Surrogate Gradient Descent on a Neuromorphic Processor. AICAS 2020: 223-227 - [c26]Jacques Kaiser, Alexander Friedrich, Juan Camilo Vasquez Tieck, Daniel Reichard, Arne Roennau, Emre Neftci, Rüdiger Dillmann:
Embodied Neuromorphic Vision with Continuous Random Backpropagation. BioRob 2020: 1202-1209 - [c25]Dan Barsever, Sameer Singh, Emre Neftci:
Building a Better Lie Detector with BERT: The Difference Between Truth and Lies. IJCNN 2020: 1-7 - [c24]Clemens J. S. Schaefer, Patrick Faley, Emre O. Neftci, Siddharth Joshi:
Memory Organization for Energy-Efficient Learning and Inference in Digital Neuromorphic Accelerators. ISCAS 2020: 1-5 - [c23]Xinyun Zou, Tiffany Hwu, Jeffrey L. Krichmar, Emre Neftci:
Terrain Classification with a Reservoir-Based Network of Spiking Neurons. ISCAS 2020: 1-5 - [i20]Clemens J. S. Schaefer, Patrick Faley, Emre O. Neftci, Siddharth Joshi:
Memory Organization for Energy-Efficient Learning and Inference in Digital Neuromorphic Accelerators. CoRR abs/2003.11639 (2020) - [i19]Kenneth Michael Stewart, Garrick Orchard, Sumit Bam Shrestha, Emre Neftci:
Online Few-shot Gesture Learning on a Neuromorphic Processor. CoRR abs/2008.01151 (2020) - [i18]Friedemann Zenke, Emre O. Neftci:
Brain-Inspired Learning on Neuromorphic Substrates. CoRR abs/2010.11931 (2020) - [i17]Melika Payvand, Mohammed E. Fouda, Fadi J. Kurdahi, Ahmed M. Eltawil, Emre O. Neftci:
On-Chip Error-triggered Learning of Multi-layer Memristive Spiking Neural Networks. CoRR abs/2011.10852 (2020)
2010 – 2019
- 2019
- [j7]Emre O. Neftci, Bruno B. Averbeck:
Reinforcement learning in artificial and biological systems. Nat. Mach. Intell. 1(3): 133-143 (2019) - [j6]Georgios Detorakis, Travis Bartley, Emre Neftci:
Contrastive Hebbian learning with random feedback weights. Neural Networks 114: 1-14 (2019) - [j5]Emre O. Neftci, Hesham Mostafa, Friedemann Zenke:
Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36(6): 51-63 (2019) - [c22]Mohammed E. Fouda, Emre Neftci, Ahmed M. Eltawil, Fadi J. Kurdahi:
Effect of Asymmetric Nonlinearity Dynamics in RRAMs on Spiking Neural Network Performance. ACSSC 2019: 495-499 - [c21]Georgios Detorakis, Sourav Dutta, Abhishek Khanna, Matthew Jerry, Suman Datta, Emre Neftci:
Inherent Weight Normalization in Stochastic Neural Networks. NeurIPS 2019: 3286-3297 - [i16]Emre O. Neftci, Hesham Mostafa, Friedemann Zenke:
Surrogate Gradient Learning in Spiking Neural Networks. CoRR abs/1901.09948 (2019) - [i15]Jacques Kaiser, Alexander Friedrich, Juan Camilo Vasquez Tieck, Daniel Reichard, Arne Roennau, Emre Neftci, Rüdiger Dillmann:
Embodied Event-Driven Random Backpropagation. CoRR abs/1904.04805 (2019) - [i14]Mohamed E. Fouda, Fadi J. Kurdahi, Ahmed M. Eltawil, Emre Neftci:
Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective. CoRR abs/1909.01771 (2019) - [i13]Kenneth Michael Stewart, Emre Neftci, Garrick Orchard, Sumit Bam Shrestha:
On-chip Few-shot Learning with Surrogate Gradient Descent on a Neuromorphic Processor. CoRR abs/1910.04972 (2019) - [i12]Melika Payvand, Mohammed E. Fouda, Fadi J. Kurdahi, Ahmed M. Eltawil, Emre O. Neftci:
Error-triggered Three-Factor Learning Dynamics for Crossbar Arrays. CoRR abs/1910.06152 (2019) - [i11]Georgios Detorakis, Sourav Dutta, Abhishek Khanna, Matthew Jerry, Suman Datta, Emre Neftci:
Inherent Weight Normalization in Stochastic Neural Networks. CoRR abs/1910.12316 (2019) - 2018
- [c20]Hirak Jyoti Kashyap, Georgios Detorakis, Nikil D. Dutt, Jeffrey L. Krichmar, Emre Neftci:
A Recurrent Neural Network Based Model of Predictive Smooth Pursuit Eye Movement in Primates. IJCNN 2018: 1-8 - [i10]Georgios Detorakis, Travis Bartley, Emre Neftci:
Contrastive Hebbian Learning with Random Feedback Weights. CoRR abs/1806.07406 (2018) - [i9]Jacques Kaiser, Hesham Mostafa, Emre Neftci:
Synaptic Plasticity Dynamics for Deep Continuous Local Learning. CoRR abs/1811.10766 (2018) - 2017
- [c19]Emre Neftci, Charles Augustine, Somnath Paul, Georgios Detorakis:
Event-driven random backpropagation: Enabling neuromorphic deep learning machines. ISCAS 2017: 1-4 - [i8]Georgios Detorakis, Sadique Sheik, Charles Augustine, Somnath Paul, Bruno U. Pedroni, Nikil D. Dutt, Jeffrey L. Krichmar, Gert Cauwenberghs, Emre Neftci:
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning. CoRR abs/1709.10205 (2017) - 2016
- [c18]Bruno U. Pedroni, Sadique Sheik, Siddharth Joshi, Georgios Detorakis, Somnath Paul, Charles Augustine, Emre Neftci, Gert Cauwenberghs:
Forward table-based presynaptic event-triggered spike-timing-dependent plasticity. BioCAS 2016: 580-583 - [c17]Emre Neftci:
Stochastic neuromorphic learning machines for weakly labeled data. ICCD 2016: 670-673 - [c16]Peter U. Diehl, Guido Zarrella, Andrew Cassidy, Bruno U. Pedroni, Emre Neftci:
Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. ICRC 2016: 1-8 - [c15]Peter U. Diehl, Bruno U. Pedroni, Andrew Cassidy, Paul Merolla, Emre Neftci, Guido Zarrella:
TrueHappiness: Neuromorphic emotion recognition on TrueNorth. IJCNN 2016: 4278-4285 - [c14]Rawan Naous, Maruan Al-Shedivat, Emre Neftci, Gert Cauwenberghs, Khaled Nabil Salama:
Stochastic synaptic plasticity with memristor crossbar arrays. ISCAS 2016: 2078-2081 - [c13]Sadique Sheik, Somnath Paul, Charles Augustine, Chinnikrishna Kothapalli, Muhammad M. Khellah, Gert Cauwenberghs, Emre Neftci:
Synaptic sampling in hardware spiking neural networks. ISCAS 2016: 2090-2093 - [c12]Sukru Burc Eryilmaz, Siddharth Joshi, Emre Neftci, Weier Wan, Gert Cauwenberghs, H.-S. Philip Wong:
Neuromorphic architectures with electronic synapses. ISQED 2016: 118-123 - [i7]Peter U. Diehl, Bruno U. Pedroni, Andrew Cassidy, Paul Merolla, Emre Neftci, Guido Zarrella:
TrueHappiness: Neuromorphic Emotion Recognition on TrueNorth. CoRR abs/1601.04183 (2016) - [i6]Peter U. Diehl, Guido Zarrella, Andrew S. Cassidy, Bruno U. Pedroni, Emre Neftci:
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware. CoRR abs/1601.04187 (2016) - [i5]Bruno U. Pedroni, Sadique Sheik, Siddharth Joshi, Georgios Detorakis, Somnath Paul, Charles Augustine, Emre Neftci, Gert Cauwenberghs:
Forward Table-Based Presynaptic Event-Triggered Spike-Timing-Dependent Plasticity. CoRR abs/1607.03070 (2016) - [i4]Sukru Burc Eryilmaz, Emre Neftci, Siddharth Joshi, SangBum Kim, Matthew BrightSky, Hsiang-Lan Lung, Chung Lam, Gert Cauwenberghs, H.-S. Philip Wong:
Training a Probabilistic Graphical Model with Resistive Switching Electronic Synapses. CoRR abs/1609.08686 (2016) - [i3]Emre Neftci, Charles Augustine, Somnath Paul, Georgios Detorakis:
Event-driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines. CoRR abs/1612.05596 (2016) - 2015
- [j4]Jordi Fonollosa, Emre Neftci, Mikhail I. Rabinovich:
Learning of Chunking Sequences in Cognition and Behavior. PLoS Comput. Biol. 11(11) (2015) - [c11]Maruan Al-Shedivat, Rawan Naous, Emre Neftci, Gert Cauwenberghs, Khaled N. Salama:
Inherently stochastic spiking neurons for probabilistic neural computation. NER 2015: 356-359 - [c10]Maruan Al-Shedivat, Emre Neftci, Gert Cauwenberghs:
Learning Non-deterministic Representations with Energy-based Ensembles. ICLR (Workshop) 2015 - [i2]Emre Neftci, Bruno U. Pedroni, Siddharth Joshi, Maruan Al-Shedivat, Gert Cauwenberghs:
Unsupervised Learning in Synaptic Sampling Machines. CoRR abs/1511.04484 (2015) - 2014
- [j3]Fabio Stefanini, Emre Neftci, Sadique Sheik, Giacomo Indiveri:
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems. Frontiers Neuroinformatics 8: 73 (2014) - [c9]Jongkil Park, Sohmyung Ha, Theodore Yu, Emre Neftci, Gert Cauwenberghs:
A 65k-neuron 73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire array transceiver. BioCAS 2014: 675-678 - 2013
- [c8]Bruno U. Pedroni, Srinjoy Das, Emre Neftci, Kenneth Kreutz-Delgado, Gert Cauwenberghs:
Neuromorphic adaptations of restricted Boltzmann machines and deep belief networks. IJCNN 2013: 1-6 - [i1]Emre Neftci, Srinjoy Das, Bruno U. Pedroni, Kenneth Kreutz-Delgado, Gert Cauwenberghs:
Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems. CoRR abs/1311.0966 (2013) - 2012
- [j2]Emre Ozgur Neftci, Bryan A. Toth, Giacomo Indiveri, Henry D. I. Abarbanel:
Dynamic State and Parameter Estimation Applied to Neuromorphic Systems. Neural Comput. 24(7): 1669-1694 (2012) - [c7]Dane S. Corneil, Daniel Sonnleithner, Emre Neftci, Elisabetta Chicca, Matthew Cook, Giacomo Indiveri, Rodney J. Douglas:
Function approximation with uncertainty propagation in a VLSI spiking neural network. IJCNN 2012: 1-7 - [c6]Dane S. Corneil, Daniel Sonnleithner, Emre Neftci, Elisabetta Chicca, Matthew Cook, Giacomo Indiveri, Rodney J. Douglas:
Real-time inference in a VLSI spiking neural network. ISCAS 2012: 2425-2428 - [c5]Emre Neftci, Jonathan Binas, Elisabetta Chicca, Giacomo Indiveri, Rodney J. Douglas:
Systematic Construction of Finite State Automata Using VLSI Spiking Neurons. Living Machines 2012: 382-383 - 2011
- [j1]Emre Neftci, Elisabetta Chicca, Giacomo Indiveri, Rodney J. Douglas:
A Systematic Method for Configuring VLSI Networks of Spiking Neurons. Neural Comput. 23(10): 2457-2497 (2011) - [c4]