default search action
Chengqi Zhang
Person information
- affiliation: University of Technology Sydney, Centre for Artificial Intelligence, FEIT, Ultimo, NSW, Australia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j148]Chuanhou Sun, Xiaoqiang Ren, Xiangjun Dong, Ping Qiu, Xiaoming Wu, Long Zhao, Ying Guo, Yongshun Gong, Chengqi Zhang:
Mining actionable repetitive positive and negative sequential patterns. Knowl. Based Syst. 302: 112398 (2024) - [j147]Yejiang Wang, Yuhai Zhao, Zhengkui Wang, Chengqi Zhang, Xingwei Wang:
Robust Multi-Graph Multi-Label Learning With Dual-Granularity Labeling. IEEE Trans. Pattern Anal. Mach. Intell. 46(10): 6509-6524 (2024) - [c239]Changlu Chen, Yanbin Liu, Ling Chen, Chengqi Zhang:
Multivariate Traffic Demand Prediction via 2D Spectral Learning and Global Spatial Optimization. ECML/PKDD (2) 2024: 72-88 - [c238]Changlu Chen, Yanbin Liu, Ling Chen, Chengqi Zhang:
Test-Time Training for Spatial-Temporal Forecasting. SDM 2024: 463-471 - [i57]Hongzhi Yin, Liang Qu, Tong Chen, Wei Yuan, Ruiqi Zheng, Jing Long, Xin Xia, Yuhui Shi, Chengqi Zhang:
On-Device Recommender Systems: A Comprehensive Survey. CoRR abs/2401.11441 (2024) - [i56]Bohao Qu, Xiaofeng Cao, Qing Guo, Yi Chang, Ivor W. Tsang, Chengqi Zhang:
Transductive Reward Inference on Graph. CoRR abs/2402.03661 (2024) - [i55]Chengpei Xu, Hao Fu, Long Ma, Wenjing Jia, Chengqi Zhang, Feng Xia, Xiaoyu Ai, Binghao Li, Wenjie Zhang:
Seeing Text in the Dark: Algorithm and Benchmark. CoRR abs/2404.08965 (2024) - [i54]Zhihong Deng, Jing Jiang, Guodong Long, Chengqi Zhang:
What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning. CoRR abs/2404.10942 (2024) - [i53]Renqiang Luo, Tao Tang, Feng Xia, Jiaying Liu, Chengpei Xu, Leo Yu Zhang, Wei Xiang, Chengqi Zhang:
Algorithmic Fairness: A Tolerance Perspective. CoRR abs/2405.09543 (2024) - [i52]He Zhang, Bang Wu, Xiangwen Yang, Xingliang Yuan, Chengqi Zhang, Shirui Pan:
Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks. CoRR abs/2405.14407 (2024) - [i51]Shutong Chen, Tianyi Zhou, Guodong Long, Jie Ma, Jing Jiang, Chengqi Zhang:
Multi-Level Additive Modeling for Structured Non-IID Federated Learning. CoRR abs/2405.16472 (2024) - [i50]Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, Shirui Pan:
ARC: A Generalist Graph Anomaly Detector with In-Context Learning. CoRR abs/2405.16771 (2024) - [i49]Shengchao Chen, Guodong Long, Jing Jiang, Chengqi Zhang:
Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models. CoRR abs/2405.20348 (2024) - [i48]Zicheng Zhao, Linhao Luo, Shirui Pan, Chengqi Zhang, Chen Gong:
Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion. CoRR abs/2408.01784 (2024) - [i47]Zhiwei Li, Guodong Long, Tianyi Zhou, Jing Jiang, Chengqi Zhang:
Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach. CoRR abs/2408.08931 (2024) - 2023
- [j146]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Gangyan Xu, Chengqi Zhang:
Shared dynamics learning for large-scale traveling salesman problem. Adv. Eng. Informatics 56: 102005 (2023) - [j145]Xu Zhang, Yongshun Gong, Chengqi Zhang, Xiaoming Wu, Ying Guo, Wenpeng Lu, Long Zhao, Xiangjun Dong:
Spatio-temporal fusion and contrastive learning for urban flow prediction. Knowl. Based Syst. 282: 111104 (2023) - [j144]Yingqing Su, Qi Feng, Wei Liu, Meng Zhu, Honghua Xia, Xiaohong Ma, Wenju Cheng, Jutao Zhang, Chengqi Zhang, Linshan Yang, Xinwei Yin:
Improved Understanding of Trade-Offs and Synergies in Ecosystem Services via Fine Land-Use Classification and Multi-Scale Analysis in the Arid Region of Northwest China. Remote. Sens. 15(20): 4976 (2023) - [j143]Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang:
Beyond Low-Pass Filtering: Graph Convolutional Networks With Automatic Filtering. IEEE Trans. Knowl. Data Eng. 35(7): 6687-6697 (2023) - [j142]Zhihong Deng, Jing Jiang, Guodong Long, Chengqi Zhang:
Causal Reinforcement Learning: A Survey. Trans. Mach. Learn. Res. 2023 (2023) - [j141]Ping Qiu, Yongshun Gong, Yuhai Zhao, Longbing Cao, Chengqi Zhang, Xiangjun Dong:
An Efficient Method for Modeling Nonoccurring Behaviors by Negative Sequential Patterns With Loose Constraints. IEEE Trans. Neural Networks Learn. Syst. 34(4): 1864-1878 (2023) - [j140]Changlu Chen, Yanbin Liu, Ling Chen, Chengqi Zhang:
Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting. IEEE Trans. Neural Networks Learn. Syst. 34(10): 6913-6925 (2023) - [c237]Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, Chengqi Zhang:
Federated Learning on Non-IID Graphs via Structural Knowledge Sharing. AAAI 2023: 9953-9961 - [c236]Xiuying Chen, Guodong Long, Chongyang Tao, Mingzhe Li, Xin Gao, Chengqi Zhang, Xiangliang Zhang:
Improving the Robustness of Summarization Systems with Dual Augmentation. ACL (1) 2023: 6846-6857 - [c235]Xu Zhang, Yongshun Gong, Xinxin Zhang, Xiaoming Wu, Chengqi Zhang, Xiangjun Dong:
Mask- and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction. CIKM 2023: 3298-3307 - [c234]Wei Wu, Bin Li, Ling Chen, Junbin Gao, Chengqi Zhang:
A Review for Weighted MinHash Algorithms (Extended abstract). ICDE 2023: 3785-3786 - [c233]Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Does Continual Learning Equally Forget All Parameters? ICML 2023: 42280-42303 - [c232]Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, Bo Yang:
Dual Personalization on Federated Recommendation. IJCAI 2023: 4558-4566 - [c231]Jie Ma, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Structured Federated Learning through Clustered Additive Modeling. NeurIPS 2023 - [c230]Changlu Chen, Yanbin Liu, Ling Chen, Chengqi Zhang:
RiskContra: A Contrastive Approach to Forecast Traffic Risks with Multi-Kernel Networks. PAKDD (4) 2023: 263-275 - [c229]Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks. ECML/PKDD (2) 2023: 52-68 - [i46]Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, Bo Yang:
Dual Personalization on Federated Recommendation. CoRR abs/2301.08143 (2023) - [i45]Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks. CoRR abs/2301.11560 (2023) - [i44]Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Does Continual Learning Equally Forget All Parameters? CoRR abs/2304.04158 (2023) - [i43]Xiuying Chen, Guodong Long, Chongyang Tao, Mingzhe Li, Xin Gao, Chengqi Zhang, Xiangliang Zhang:
Improving the Robustness of Summarization Systems with Dual Augmentation. CoRR abs/2306.01090 (2023) - [i42]Zhihong Deng, Jing Jiang, Guodong Long, Chengqi Zhang:
Causal Reinforcement Learning: A Survey. CoRR abs/2307.01452 (2023) - [i41]Shengchao Chen, Guodong Long, Jing Jiang, Dikai Liu, Chengqi Zhang:
Foundation Models for Weather and Climate Data Understanding: A Comprehensive Survey. CoRR abs/2312.03014 (2023) - 2022
- [j139]Chun Wang, Shirui Pan, Celina Ping Yu, Ruiqi Hu, Guodong Long, Chengqi Zhang:
Deep neighbor-aware embedding for node clustering in attributed graphs. Pattern Recognit. 122: 108230 (2022) - [j138]Wenli Zhang, Wei Zhang, Yubing Liu, Jutao Zhang, Linshan Yang, Zengru Wang, Zhongchao Mao, Shi Qi, Chengqi Zhang, Zhenliang Yin:
The Role of Soil Salinization in Shaping the Spatio-Temporal Patterns of Soil Organic Carbon Stock. Remote. Sens. 14(13): 3204 (2022) - [j137]Yunqiu Xu, Meng Fang, Ling Chen, Gangyan Xu, Yali Du, Chengqi Zhang:
Reinforcement Learning With Multiple Relational Attention for Solving Vehicle Routing Problems. IEEE Trans. Cybern. 52(10): 11107-11120 (2022) - [j136]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy. IEEE Trans. Knowl. Data Eng. 34(5): 2293-2305 (2022) - [j135]Wei Wu, Bin Li, Ling Chen, Junbin Gao, Chengqi Zhang:
A Review for Weighted MinHash Algorithms. IEEE Trans. Knowl. Data Eng. 34(6): 2553-2573 (2022) - [j134]Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Extracting Local Reasoning Chains of Deep Neural Networks. Trans. Mach. Learn. Res. 2022 (2022) - [c228]Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, Chengqi Zhang:
FedProto: Federated Prototype Learning across Heterogeneous Clients. AAAI 2022: 8432-8440 - [c227]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, Chengqi Zhang:
Perceiving the World: Question-guided Reinforcement Learning for Text-based Games. ACL (1) 2022: 538-560 - [c226]Ming Xie, Jie Ma, Guodong Long, Chengqi Zhang:
Robust Clustered Federated Learning with Bootstrap Median-of-Means. APWeb/WAIM (1) 2022: 237-250 - [c225]Shuang Ao, Tianyi Zhou, Jing Jiang, Guodong Long, Xuan Song, Chengqi Zhang:
EAT-C: Environment-Adversarial sub-Task Curriculum for Efficient Reinforcement Learning. ICML 2022: 822-843 - [c224]Shaoshen Wang, Yanbin Liu, Ling Chen, Chengqi Zhang:
Diminishing Empirical Risk Minimization for Unsupervised Anomaly Detection. IJCNN 2022: 1-8 - [i40]Jie Ma, Guodong Long, Tianyi Zhou, Jing Jiang, Chengqi Zhang:
On the Convergence of Clustered Federated Learning. CoRR abs/2202.06187 (2022) - [i39]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, Chengqi Zhang:
Perceiving the World: Question-guided Reinforcement Learning for Text-based Games. CoRR abs/2204.09597 (2022) - [i38]Shaoshen Wang, Yanbin Liu, Ling Chen, Chengqi Zhang:
Diminishing Empirical Risk Minimization for Unsupervised Anomaly Detection. CoRR abs/2205.14676 (2022) - [i37]Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, Chengqi Zhang:
Federated Learning on Non-IID Graphs via Structural Knowledge Sharing. CoRR abs/2211.13009 (2022) - 2021
- [j133]Xiaochun Cheng, Chengqi Zhang, Yi Qian, Moayad Aloqaily, Yang Xiao:
Editorial: deep learning for 5G IoT systems. Int. J. Mach. Learn. Cybern. 12(11): 3049-3051 (2021) - [j132]Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang:
Search Efficient Binary Network Embedding. ACM Trans. Knowl. Discov. Data 15(4): 61:1-61:27 (2021) - [j131]Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu:
A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32(1): 4-24 (2021) - [c223]Shaoshen Wang, Ling Chen, Farookh Khadeer Hussain, Chengqi Zhang:
Semi-supervised Variational Multi-view Anomaly Detection. APWeb/WAIM (1) 2021: 125-133 - [c222]Hongxin Wu, Chengqi Zhang:
Influence Between Music Based on Big Data Analysis. CIS 2021: 338-342 - [c221]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Chengqi Zhang:
Generalization in Text-based Games via Hierarchical Reinforcement Learning. EMNLP (Findings) 2021: 1343-1353 - [c220]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, Chengqi Zhang:
Isometric Propagation Network for Generalized Zero-shot Learning. ICLR 2021 - [c219]Shaoshen Wang, Yanbin Liu, Ling Chen, Chengqi Zhang:
Cross-aligned and Gumbel-refactored Autoencoders for Multi-view Anomaly Detection. ICTAI 2021: 1368-1375 - [c218]Yuhai Zhao, Yejiang Wang, Zhengkui Wang, Chengqi Zhang:
Multi-graph Multi-label Learning with Dual-granularity Labeling. KDD 2021: 2327-2337 - [i36]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, Chengqi Zhang:
Isometric Propagation Network for Generalized Zero-shot Learning. CoRR abs/2102.02038 (2021) - [i35]Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang:
Beyond Low-pass Filtering: Graph Convolutional Networks with Automatic Filtering. CoRR abs/2107.04755 (2021) - [i34]Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Zhendong Niu, Chengqi Zhang:
MIMO: Mutual Integration of Patient Journey and Medical Ontology for Healthcare Representation Learning. CoRR abs/2107.09288 (2021) - [i33]Guodong Long, Yue Tan, Jing Jiang, Chengqi Zhang:
Federated Learning for Open Banking. CoRR abs/2108.10749 (2021) - [i32]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Chengqi Zhang:
Generalization in Text-based Games via Hierarchical Reinforcement Learning. CoRR abs/2109.09968 (2021) - 2020
- [j130]Cheng Zheng, Qin Zhang, Guodong Long, Chengqi Zhang, Sean D. Young, Wei Wang:
Measuring Time-Sensitive and Topic-Specific Influence in Social Networks With LSTM and Self-Attention. IEEE Access 8: 82481-82492 (2020) - [j129]Qingfeng Chen, Yulu Qiao, Fang Hu, Yongjie Li, Kai Tan, Mingrui Zhu, Chengqi Zhang:
Community detection in complex network based on APT method. Pattern Recognit. Lett. 138: 193-200 (2020) - [j128]Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang:
Network Representation Learning: A Survey. IEEE Trans. Big Data 6(1): 3-28 (2020) - [j127]Shirui Pan, Ruiqi Hu, Sai-Fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang:
Learning Graph Embedding With Adversarial Training Methods. IEEE Trans. Cybern. 50(6): 2475-2487 (2020) - [j126]Yan Yan, Mingkui Tan, Ivor W. Tsang, Yi Yang, Qinfeng Shi, Chengqi Zhang:
Fast and Low Memory Cost Matrix Factorization: Algorithm, Analysis, and Case Study. IEEE Trans. Knowl. Data Eng. 32(2): 288-301 (2020) - [j125]Haishuai Wang, Jia Wu, Xingquan Zhu, Yixin Chen, Chengqi Zhang:
Time-Variant Graph Classification. IEEE Trans. Syst. Man Cybern. Syst. 50(8): 2883-2896 (2020) - [j124]Fei Xiong, Ximeng Wang, Shirui Pan, Hong Yang, Haishuai Wang, Chengqi Zhang:
Social Recommendation With Evolutionary Opinion Dynamics. IEEE Trans. Syst. Man Cybern. Syst. 50(10): 3804-3816 (2020) - [c217]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Attribute Propagation Network for Graph Zero-Shot Learning. AAAI 2020: 4868-4875 - [c216]Han Zheng, Jing Jiang, Pengfei Wei, Guodong Long, Chengqi Zhang:
Competitive and Cooperative Heterogeneous Deep Reinforcement Learning. AAMAS 2020: 1656-1664 - [c215]Yunqiu Xu, Ling Chen, Meng Fang, Yang Wang, Chengqi Zhang:
Deep Reinforcement Learning with Transformers for Text Adventure Games. CoG 2020: 65-72 - [c214]Hao Huang, Guodong Long, Tao Shen, Jing Jiang, Chengqi Zhang:
RatE: Relation-Adaptive Translating Embedding for Knowledge Graph Completion. COLING 2020: 556-567 - [c213]Yang Li, Tao Shen, Guodong Long, Jing Jiang, Tianyi Zhou, Chengqi Zhang:
Improving Long-Tail Relation Extraction with Collaborating Relation-Augmented Attention. COLING 2020: 1653-1664 - [c212]Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang, Chengqi Zhang:
BiteNet: Bidirectional Temporal Encoder Network to Predict Medical Outcomes. ICDM 2020: 412-421 - [c211]Tao Shen, Xiubo Geng, Guodong Long, Jing Jiang, Chengqi Zhang, Daxin Jiang:
Effective Search of Logical Forms for Weakly Supervised Knowledge-Based Question Answering. IJCAI 2020: 2227-2233 - [c210]Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang:
Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. KDD 2020: 753-763 - [c209]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, Chengqi Zhang:
Deep Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games. NeurIPS 2020 - [c208]Han Zheng, Pengfei Wei, Jing Jiang, Guodong Long, Qinghua Lu, Chengqi Zhang:
Cooperative Heterogeneous Deep Reinforcement Learning. NeurIPS 2020 - [p5]Guodong Long, Yue Tan, Jing Jiang, Chengqi Zhang:
Federated Learning for Open Banking. Federated Learning 2020: 240-254 - [i31]Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang:
Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. CoRR abs/2005.11650 (2020) - [i30]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy. CoRR abs/2006.15479 (2020) - [i29]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Attribute Propagation Network for Graph Zero-shot Learning. CoRR abs/2009.11816 (2020) - [i28]Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang, Chengqi Zhang:
BiteNet: Bidirectional Temporal Encoder Network to Predict Medical Outcomes. CoRR abs/2009.13252 (2020) - [i27]Yang Li, Tao Shen, Guodong Long, Jing Jiang, Tianyi Zhou, Chengqi Zhang:
Improving Long-Tail Relation Extraction with Collaborating Relation-Augmented Attention. CoRR abs/2010.03773 (2020) - [i26]Hao Huang, Guodong Long, Tao Shen, Jing Jiang, Chengqi Zhang:
RatE: Relation-Adaptive Translating Embedding for Knowledge Graph Completion. CoRR abs/2010.04863 (2020) - [i25]Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, Chengqi Zhang:
Deep Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games. CoRR abs/2010.11655 (2020) - [i24]Han Zheng, Pengfei Wei, Jing Jiang, Guodong Long, Qinghua Lu, Chengqi Zhang:
Cooperative Heterogeneous Deep Reinforcement Learning. CoRR abs/2011.00791 (2020) - [i23]Yejiang Wang, Yuhai Zhao, Zhengkui Wang, Chengqi Zhang:
Towards Coarse and Fine-grained Multi-Graph Multi-Label Learning. CoRR abs/2012.10650 (2020)
2010 – 2019
- 2019
- [j123]Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang:
Attributed network embedding via subspace discovery. Data Min. Knowl. Discov. 33(6): 1953-1980 (2019) - [j122]Xianwen Jin, Xianling Liu, Yuejiao Hou, Gesheng Song, Chengqi Zhang:
Preliminary Application of Intravoxel Incoherent Motion Diffusion-Weighted Imaging in Diagnosing Lung Cancer. J. Medical Imaging Health Informatics 9(4): 776-780 (2019) - [j121]Qin Zhang, Jia Wu, Peng Zhang, Guodong Long, Chengqi Zhang:
Salient Subsequence Learning for Time Series Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(9): 2193-2207 (2019) - [j120]Xinxin Jiang, Shirui Pan, Guodong Long, Fei Xiong, Jing Jiang, Chengqi Zhang:
Cost-Sensitive Parallel Learning Framework for Insurance Intelligence Operation. IEEE Trans. Ind. Electron. 66(12): 9713-9723 (2019) - [j119]Jiangchao Yao, Jiajie Wang, Ivor W. Tsang, Ya Zhang, Jun Sun, Chengqi Zhang, Rui Zhang:
Deep Learning From Noisy Image Labels With Quality Embedding. IEEE Trans. Image Process. 28(4): 1909-1922 (2019) - [j118]Ting Guo, Shirui Pan, Xingquan Zhu, Chengqi Zhang:
CFOND: Consensus Factorization for Co-Clustering Networked Data. IEEE Trans. Knowl. Data Eng. 31(4): 706-719 (2019) - [j117]Wei Wu, Bin Li, Ling Chen, Chengqi Zhang, Philip S. Yu:
Improved Consistent Weighted Sampling Revisited. IEEE Trans. Knowl. Data Eng. 31(12): 2332-2345 (2019) - [c207]Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang:
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. IJCAI 2019: 1907-1913 - [c206]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang:
Prototype Propagation Networks (PPN) for Weakly-supervised Few-shot Learning on Category Graph. IJCAI 2019: 3015-3022 - [c205]Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi Zhang:
Attributed Graph Clustering: A Deep Attentional Embedding Approach. IJCAI 2019: 3670-3676 - [c204]Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together. NAACL-HLT (1) 2019: 1256-1266 - [c203]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang:
Learning to Propagate for Graph Meta-Learning. NeurIPS 2019: 1037-1048 - [i22]Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu:
A Comprehensive Survey on Graph Neural Networks. CoRR abs/1901.00596 (2019) - [i21]Shirui Pan, Ruiqi Hu, Sai-Fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang:
Learning Graph Embedding with Adversarial Training Methods. CoRR abs/1901.01250 (2019) - [i20]Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang:
Attributed Network Embedding via Subspace Discovery. CoRR abs/1901.04095 (2019) - [i19]Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang:
Search Efficient Binary Network Embedding. CoRR abs/1901.04097 (2019) - [i18]Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang:
Prototype Propagation Networks (PPN) for Weakly-supervised Few-shot Learning on Category Graph. CoRR abs/1905.04042 (2019) - [i17]Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang:
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. CoRR abs/1906.00121 (2019) - [i16]Chun Wang,