default search action
Helge Langseth
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Bjørnar Vassøy, Helge Langseth:
Consumer-side fairness in recommender systems: a systematic survey of methods and evaluation. Artif. Intell. Rev. 57(4): 101 (2024) - [i18]Håkon Hanisch Kjærnli, Lluis Mas-Ribas, Aida Ashrafi, Gleb Sizov, Helge Langseth, Odd Erik Gundersen:
Probing the Robustness of Time-series Forecasting Models with CounterfacTS. CoRR abs/2403.03508 (2024) - 2023
- [j30]Sofia Aftab, Heri Ramampiaro, Helge Langseth, Massimiliano Ruocco:
Deep Contextual Grid Triplet Network for Context-Aware Recommendation. IEEE Access 11: 97522-97537 (2023) - [j29]Ludvig Killingberg, Helge Langseth:
The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c39]Yanzhe Bekkemoen, Helge Langseth:
ASAP: Attention-Based State Space Abstraction for Policy Summarization. ACML 2023: 137-152 - [c38]Odd Erik Gundersen, Saeid Shamsaliei, Håkon Sletten Kjærnli, Helge Langseth:
On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies Involving Neural Networks and Randomness. ACM-REP 2023: 37-61 - [c37]David Baumgartner, Helge Langseth, Heri Ramampiaro, Kenth Engø-Monsen:
mTADS: Multivariate Time Series Anomaly Detection Benchmark Suites. IEEE Big Data 2023: 588-597 - [c36]Ludvig Killingberg, Helge Langseth:
Bayesian Exploration in Deep Reinforcement Learning. NAIS 2023 - [c35]Bjørnar Vassøy, Helge Langseth, Benjamin Kille:
Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. RecSys 2023: 871-876 - [i17]Bjørnar Vassøy, Helge Langseth:
Consumer-side Fairness in Recommender Systems: A Systematic Survey of Methods and Evaluation. CoRR abs/2305.09330 (2023) - [i16]Bjørnar Vassøy, Helge Langseth, Benjamin Kille:
Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. CoRR abs/2308.15230 (2023) - [i15]Inga Strümke, Helge Langseth:
Lecture Notes in Probabilistic Diffusion Models. CoRR abs/2312.10393 (2023) - 2022
- [c34]Shweta Tiwari, Gavin Bell, Helge Langseth, Heri Ramampiaro:
Detection of Potential Manipulations in Electricity Market using Machine Learning Approaches. ICAART (3) 2022: 975-983 - [c33]Antonio Salmerón, Helge Langseth, Andrés R. Masegosa, Thomas D. Nielsen:
A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. PGM 2022: 205-216 - [i14]Emil Blixt Hansen, Helge Langseth, Nadeem Iftikhar, Simon Bøgh:
A data-driven modular architecture with denoising autoencoders for health indicator construction in a manufacturing process. CoRR abs/2208.05208 (2022) - 2021
- [j28]Shweta Tiwari, Heri Ramampiaro, Helge Langseth:
Machine Learning in Financial Market Surveillance: A Survey. IEEE Access 9: 159734-159754 (2021) - [j27]Andrés R. Masegosa, Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón:
Probabilistic Models with Deep Neural Networks. Entropy 23(1): 117 (2021) - [i13]Yanzhe Bekkemoen, Helge Langseth:
Correcting Classification: A Bayesian Framework Using Explanation Feedback to Improve Classification Abilities. CoRR abs/2105.02653 (2021) - 2020
- [j26]Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón:
Analyzing concept drift: A case study in the financial sector. Intell. Data Anal. 24(3): 665-688 (2020) - [j25]Bjørn Magnus Mathisen, Agnar Aamodt, Kerstin Bach, Helge Langseth:
Learning similarity measures from data. Prog. Artif. Intell. 9(2): 129-143 (2020) - [c32]Tárik S. Salem, Helge Langseth, Heri Ramampiaro:
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. UAI 2020: 1179-1187 - [i12]Bjørn Magnus Mathisen, Agnar Aamodt, Kerstin Bach, Helge Langseth:
Learning similarity measures from data. CoRR abs/2001.05312 (2020) - [i11]Tárik S. Salem, Helge Langseth, Heri Ramampiaro:
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. CoRR abs/2007.09670 (2020)
2010 – 2019
- 2019
- [j24]Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Rafael Cabañas, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen:
AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowl. Based Syst. 163: 595-597 (2019) - [c31]Tárik S. Salem, Karan Kathuria, Heri Ramampiaro, Helge Langseth:
Forecasting Intra-Hour Imbalances in Electric Power Systems. AAAI 2019: 9595-9600 - [p1]Heri Ramampiaro, Helge Langseth, Thomas Almenningen, Herman Schistad, Martin Havig, Hai Thanh Nguyen:
New Ideas in Ranking for Personalized Fashion Recommender Systems. Business and Consumer Analytics: New Ideas 2019: 933-961 - [i10]Georgios K. Pitsilis, Heri Ramampiaro, Helge Langseth:
Securing Tag-based recommender systems against profile injection attacks: A comparative study. (Extended Report). CoRR abs/1901.08422 (2019) - [i9]Tárik S. Salem, Karan Kathuria, Heri Ramampiaro, Helge Langseth:
Forecasting Intra-Hour Imbalances in Electric Power Systems. CoRR abs/1902.00563 (2019) - [i8]Andrés R. Masegosa, Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón:
Probabilistic Models with Deep Neural Networks. CoRR abs/1908.03442 (2019) - 2018
- [j23]Georgios K. Pitsilis, Heri Ramampiaro, Helge Langseth:
Effective hate-speech detection in Twitter data using recurrent neural networks. Appl. Intell. 48(12): 4730-4742 (2018) - [j22]Darío Ramos-López, Andrés R. Masegosa, Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen:
Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. Int. J. Approx. Reason. 100: 115-134 (2018) - [j21]Basant Agarwal, Heri Ramampiaro, Helge Langseth, Massimiliano Ruocco:
A deep network model for paraphrase detection in short text messages. Inf. Process. Manag. 54(6): 922-937 (2018) - [j20]Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen:
A Review of Inference Algorithms for Hybrid Bayesian Networks. J. Artif. Intell. Res. 62: 799-828 (2018) - [c30]Ming Zeng, Haoxiang Gao, Tong Yu, Ole J. Mengshoel, Helge Langseth, Ian R. Lane, Xiaobing Liu:
Understanding and improving recurrent networks for human activity recognition by continuous attention. UbiComp 2018: 56-63 - [i7]Georgios K. Pitsilis, Heri Ramampiaro, Helge Langseth:
Detecting Offensive Language in Tweets Using Deep Learning. CoRR abs/1801.04433 (2018) - [i6]Georgios Pitsilis, Heri Ramampiaro, Helge Langseth:
Securing Tag-based recommender systems against profile injection attacks: A comparative study. CoRR abs/1808.10550 (2018) - [i5]Ming Zeng, Haoxiang Gao, Tong Yu, Ole J. Mengshoel, Helge Langseth, Ian R. Lane, Xiaobing Liu:
Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention. CoRR abs/1810.04038 (2018) - 2017
- [j19]Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen:
Scaling up Bayesian variational inference using distributed computing clusters. Int. J. Approx. Reason. 88: 435-451 (2017) - [j18]Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen:
A parallel algorithm for Bayesian network structure learning from large data sets. Knowl. Based Syst. 117: 46-55 (2017) - [j17]Darío Ramos-López, Andrés R. Masegosa, Ana M. Martínez, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen:
MAP inference in dynamic hybrid Bayesian networks. Prog. Artif. Intell. 6(2): 133-144 (2017) - [c29]Bjørn Magnus Mathisen, Agnar Aamodt, Helge Langseth:
Data Driven Case Base Construction for Prediction of Success of Marine Operations. ICCBR (Workshops) 2017: 104-113 - [c28]Andrés R. Masegosa, Thomas D. Nielsen, Helge Langseth, Darío Ramos-López, Antonio Salmerón, Anders L. Madsen:
Bayesian Models of Data Streams with Hierarchical Power Priors. ICML 2017: 2334-2343 - [c27]Eliezer de Souza da Silva, Helge Langseth, Heri Ramampiaro:
Content-Based Social Recommendation with Poisson Matrix Factorization. ECML/PKDD (1) 2017: 530-546 - [c26]Massimiliano Ruocco, Ole Steinar Lillestøl Skrede, Helge Langseth:
Inter-Session Modeling for Session-Based Recommendation. DLRS@RecSys 2017: 24-31 - [i4]Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Rafael Cabañas, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen:
AMIDST: a Java Toolbox for Scalable Probabilistic Machine Learning. CoRR abs/1704.01427 (2017) - [i3]Massimiliano Ruocco, Ole Steinar Lillestøl Skrede, Helge Langseth:
Inter-Session Modeling for Session-Based Recommendation. CoRR abs/1706.07506 (2017) - [i2]Andrés R. Masegosa, Thomas D. Nielsen, Helge Langseth, Darío Ramos-López, Antonio Salmerón, Anders L. Madsen:
Bayesian Models of Data Streams with Hierarchical Power Priors. CoRR abs/1707.02293 (2017) - [i1]Basant Agarwal, Heri Ramampiaro, Helge Langseth, Massimiliano Ruocco:
A Deep Network Model for Paraphrase Detection in Short Text Messages. CoRR abs/1712.02820 (2017) - 2016
- [c25]Antonio Salmerón, Anders L. Madsen, Frank Jensen, Helge Langseth, Thomas D. Nielsen, Darío Ramos-López, Ana M. Martínez, Andrés R. Masegosa:
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs. ECAI 2016: 743-750 - [c24]Rafael Cabañas, Ana M. Martínez, Andrés R. Masegosa, Darío Ramos-López, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen:
Financial Data Analysis with PGMs Using AMIDST. ICDM Workshops 2016: 1284-1287 - [c23]Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen:
d-VMP: Distributed Variational Message Passing. Probabilistic Graphical Models 2016: 321-332 - [c22]Darío Ramos-López, Antonio Salmerón, Rafael Rumí, Ana M. Martínez, Thomas D. Nielsen, Andrés R. Masegosa, Helge Langseth, Anders L. Madsen:
Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Probabilistic Graphical Models 2016: 415-425 - 2015
- [j16]Helge Langseth, Thomas D. Nielsen:
Scalable learning of probabilistic latent models for collaborative filtering. Decis. Support Syst. 74: 1-11 (2015) - [j15]Boye Annfelt Høverstad, Axel Tidemann, Helge Langseth, Pinar Öztürk:
Short-Term Load Forecasting With Seasonal Decomposition Using Evolution for Parameter Tuning. IEEE Trans. Smart Grid 6(4): 1904-1913 (2015) - [c21]Anders L. Madsen, Frank Jensen, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen:
Parallelisation of the PC Algorithm. CAEPIA 2015: 14-24 - [c20]Antonio Salmerón, Darío Ramos-López, Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Antonio Fernández, Helge Langseth, Anders L. Madsen, Thomas D. Nielsen:
Parallel Importance Sampling in Conditional Linear Gaussian Networks. CAEPIA 2015: 36-46 - [c19]Inmaculada Pérez-Bernabé, Antonio Salmerón, Helge Langseth:
Learning Conditional Distributions Using Mixtures of Truncated Basis Functions. ECSQARU 2015: 397-406 - [c18]Antonio Salmerón, Rafael Rumí, Helge Langseth, Anders L. Madsen, Thomas D. Nielsen:
MPE Inference in Conditional Linear Gaussian Networks. ECSQARU 2015: 407-416 - [c17]Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez:
Modeling Concept Drift: A Probabilistic Graphical Model Based Approach. IDA 2015: 72-83 - [c16]Øyvind H. Myklatun, Thorstein K. Thorrud, Hai Thanh Nguyen, Helge Langseth, Anders Kofod-Petersen:
Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data. RecSys Challenge 2015: 5:1-5:4 - [c15]Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez:
Dynamic Bayesian modeling for risk prediction in credit operations. SCAI 2015: 17-26 - 2014
- [j14]Helge Langseth, Thomas D. Nielsen, Inmaculada Pérez-Bernabé, Antonio Salmerón:
Learning mixtures of truncated basis functions from data. Int. J. Approx. Reason. 55(4): 940-956 (2014) - [j13]Shengtong Zhong, Helge Langseth, Thomas Dyhre Nielsen:
A classification-based approach to monitoring the safety of dynamic systems. Reliab. Eng. Syst. Saf. 121: 61-71 (2014) - [c14]Hai Thanh Nguyen, Thomas Almenningen, Martin Havig, Herman Schistad, Anders Kofod-Petersen, Helge Langseth, Heri Ramampiaro:
Learning to Rank for Personalised Fashion Recommender Systems via Implicit Feedback. MIKE 2014: 51-61 - [c13]Thomas D. Nielsen, Sigve Hovda, Antonio Fernández, Helge Langseth, Anders L. Madsen, Andrés R. Masegosa, Antonio Salmerón:
Requirement Engineering for a Small Project with Pre-Specified Scope. NIK 2014 - [c12]Anders L. Madsen, Frank Jensen, Antonio Salmerón, Martin Karlsen, Helge Langseth, Thomas D. Nielsen:
A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs. Probabilistic Graphical Models 2014: 302-317 - 2013
- [c11]Boye Annfelt Høverstad, Axel Tidemann, Helge Langseth:
Effects of data cleansing on load prediction algorithms. CIASG 2013: 93-100 - [c10]Helge Langseth, David Marquez, Martin Neil:
Fast Approximate Inference in Hybrid Bayesian Networks Using Dynamic Discretisation. IWINAC (1) 2013: 225-234 - [c9]Helge Langseth:
Beating the bookie: A look at statistical models for prediction of football matches. SCAI 2013: 165-174 - 2012
- [j12]Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón:
Mixtures of truncated basis functions. Int. J. Approx. Reason. 53(2): 212-227 (2012) - [j11]Helge Langseth, Thomas Dyhre Nielsen:
A latent model for collaborative filtering. Int. J. Approx. Reason. 53(4): 447-466 (2012) - 2011
- [c8]Tore Bruland, Agnar Aamodt, Helge Langseth:
A hybrid CBR and BN architecture refined through data analysis. ISDA 2011: 906-913 - [c7]Tor Gunnar Houeland, Tore Bruland, Agnar Aamodt, Helge Langseth:
Extended Abstract: Combining CBR and BN using metareasoning. SCAI 2011: 189-190 - [c6]Terje N. Lillegraven, Arnt C. Wolden, Anders Kofod-Petersen, Helge Langseth:
Extended Abstract: A design for a tourist CF system. SCAI 2011: 193-194 - [e1]Anders Kofod-Petersen, Fredrik Heintz, Helge Langseth:
Eleventh Scandinavian Conference on Artificial Intelligence, SCAI 2011, Trondheim, Norway, May 24th - 26th, 2011. Frontiers in Artificial Intelligence and Applications 227, IOS Press 2011, ISBN 978-1-60750-753-6 [contents] - 2010
- [j10]Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón:
Parameter estimation and model selection for mixtures of truncated exponentials. Int. J. Approx. Reason. 51(5): 485-498 (2010) - [c5]Shengtong Zhong, Ana M. Martínez, Thomas D. Nielsen, Helge Langseth:
Towards a More Expressive Model for Dynamic Classification. FLAIRS 2010 - [c4]Tore Bruland, Agnar Aamodt, Helge Langseth:
Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. Intelligent Information Processing 2010: 82-91
2000 – 2009
- 2009
- [j9]Helge Langseth, Thomas D. Nielsen:
Latent classification models for binary data. Pattern Recognit. 42(11): 2724-2736 (2009) - [j8]Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón:
Inference in hybrid Bayesian networks. Reliab. Eng. Syst. Saf. 94(10): 1499-1509 (2009) - [c3]Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón:
Maximum Likelihood Learning of Conditional MTE Distributions. ECSQARU 2009: 240-251 - 2007
- [j7]Helge Langseth, Luigi Portinale:
Bayesian networks in reliability. Reliab. Eng. Syst. Saf. 92(1): 92-108 (2007) - 2006
- [j6]Helge Langseth, Thomas D. Nielsen:
Classification using Hierarchical Naïve Bayes models. Mach. Learn. 63(2): 135-159 (2006) - 2005
- [j5]Helge Langseth, Thomas D. Nielsen:
Latent Classification Models. Mach. Learn. 59(3): 237-265 (2005) - 2003
- [j4]Helge Langseth, Thomas D. Nielsen:
Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains. J. Mach. Learn. Res. 4: 339-368 (2003) - [j3]Helge Langseth, Finn Verner Jensen:
Decision theoretic troubleshooting of coherent systems. Reliab. Eng. Syst. Saf. 80(1): 49-62 (2003) - 2002
- [b1]Helge Langseth:
Bayesian networks with applications in reliability analysis. Norwegian University of Science and Technology, Trondheim, Norway, 2002 - 2001
- [j2]Finn Verner Jensen, Uffe Kjærulff, Brian Kristiansen, Helge Langseth, Claus Skaanning, Jirí Vomlel, Marta Vomlelová:
The SACSO methodology for troubleshooting complex systems. Artif. Intell. Eng. Des. Anal. Manuf. 15(4): 321-333 (2001) - [j1]Helge Langseth, Olav Bangsø:
Parameter Learning in Object-Oriented Bayesian Networks. Ann. Math. Artif. Intell. 32(1-4): 221-243 (2001) - [c2]Olav Bangsø, Helge Langseth, Thomas D. Nielsen:
Structural Learning in Object Oriented Domains. FLAIRS 2001: 340-344 - [c1]Helge Langseth, Finn Verner Jensen:
Heuristics for Two Extensions of Basic Troubleshooting. SCAI 2001: 80-89
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 00:42 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint