default search action
Mark A. Girolami
Mark Girolami
Person information
- affiliation: University of Cambridge, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j89]James Walsh, Oluwafunmilola Kesa, Andrew Wang, Mihai Ilas, Patrick O'Hara, Oscar Giles, Neil Dhir, Mark Girolami, Theodoros Damoulas:
Near Real-Time Social Distance Estimation In London. Comput. J. 67(1): 95-109 (2024) - [j88]Yiming Zhang, Alix Marie d'Avigneau, Georgios M. Hadjidemetriou, Lavindra de Silva, Mark Girolami, Ioannis K. Brilakis:
Bayesian dynamic modelling for probabilistic prediction of pavement condition. Eng. Appl. Artif. Intell. 133: 108637 (2024) - [j87]Alex Glyn-Davies, Connor Duffin, Ömer Deniz Akyildiz, Mark Girolami:
Φ-DVAE: Physics-informed dynamical variational autoencoders for unstructured data assimilation. J. Comput. Phys. 515: 113293 (2024) - [j86]Sin-Chi Kuok, Ka-Veng Yuen, Tim J. Dodwell, Mark Girolami:
Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification. Knowl. Based Syst. 301: 112272 (2024) - [c61]Hanlin Yu, Marcelo Hartmann, Bernardo Williams Moreno Sanchez, Mark Girolami, Arto Klami:
Riemannian Laplace Approximation with the Fisher Metric. AISTATS 2024: 820-828 - [i48]Ömer Deniz Akyildiz, Mark Girolami, Andrew M. Stuart, Arnaud Vadeboncoeur:
Efficient Prior Calibration From Indirect Data. CoRR abs/2405.17955 (2024) - [i47]Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, Tim Sullivan:
Autoencoders in Function Space. CoRR abs/2408.01362 (2024) - 2023
- [j85]Lawrence A. Bull, Domenic Di Francesco, Maharshi Harshadbhai Dhada, Olof Steinert, Tony Lindgren, Ajith Kumar Parlikad, Andrew B. Duncan, Mark Girolami:
Hierarchical Bayesian modeling for knowledge transfer across engineering fleets via multitask learning. Comput. Aided Civ. Infrastructure Eng. 38(7): 821-848 (2023) - [j84]Arnaud Vadeboncoeur, Ömer Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami, Fehmi Cirak:
Fully probabilistic deep models for forward and inverse problems in parametric PDEs. J. Comput. Phys. 491: 112369 (2023) - [j83]Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew B. Duncan:
Theoretical Guarantees for the Statistical Finite Element Method. SIAM/ASA J. Uncertain. Quantification 11(4): 1278-1307 (2023) - [j82]Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, Nikolas Nüsken:
Bayesian learning via neural Schrödinger-Föllmer flows. Stat. Comput. 33(1): 3 (2023) - [j81]Simon Hubbert, Emilio Porcu, Chris J. Oates, Mark Girolami:
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres. Trans. Mach. Learn. Res. 2023 (2023) - [c60]Andrea Marinoni, Marine Mercier, Qian Shi, Sivasakthy Selvakumaran, Mark Girolami:
Incorporating Reliability in Graph Information Propagation by Fluid Dynamics Diffusion: A case of Multimodal Semisupervised Deep Learning. ICASSP 2023: 1-5 - [c59]Arnaud Vadeboncoeur, Ieva Kazlauskaite, Yanni Papandreou, Fehmi Cirak, Mark Girolami, Ömer Deniz Akyildiz:
Random Grid Neural Processes for Parametric Partial Differential Equations. ICML 2023: 34759-34778 - [i46]Arnaud Vadeboncoeur, Ieva Kazlauskaite, Yanni Papandreou, Fehmi Cirak, Mark Girolami, Ömer Deniz Akyildiz:
Random Grid Neural Processes for Parametric Partial Differential Equations. CoRR abs/2301.11040 (2023) - [i45]Thomas Gaskin, Grigorios A. Pavliotis, Mark Girolami:
Inferring networks from time series: a neural approach. CoRR abs/2303.18059 (2023) - [i44]Lawrence A. Bull, Matthew R. Jones, Elizabeth J. Cross, Andrew B. Duncan, Mark Girolami:
Encoding Domain Expertise into Multilevel Models for Source Location. CoRR abs/2305.08657 (2023) - [i43]Marcelo Hartmann, Bernardo Williams, Hanlin Yu, Mark Girolami, Alessandro Barp, Arto Klami:
Warped geometric information on the optimisation of Euclidean functions. CoRR abs/2308.08305 (2023) - [i42]Hanlin Yu, Marcelo Hartmann, Bernardo Williams, Mark Girolami, Arto Klami:
Riemannian Laplace Approximation with the Fisher Metric. CoRR abs/2311.02766 (2023) - [i41]Andrea Marinoni, Pietro Lio', Alessandro Barp, Christian Jutten, Mark Girolami:
Improving embedding of graphs with missing data by soft manifolds. CoRR abs/2311.17598 (2023) - 2022
- [j80]Connor Duffin, Edward Cripps, Thomas Stemler, Mark Girolami:
Low-rank statistical finite elements for scalable model-data synthesis. J. Comput. Phys. 463: 111261 (2022) - [j79]Ömer Deniz Akyildiz, Connor Duffin, Sotirios Sabanis, Mark Girolami:
Statistical Finite Elements via Langevin Dynamics. SIAM/ASA J. Uncertain. Quantification 10(4): 1560-1585 (2022) - [j78]Alex Glyn-Davies, Mark Girolami:
Anomaly detection in streaming data with gaussian process based stochastic differential equations. Pattern Recognit. Lett. 153: 254-260 (2022) - [j77]Justin Bunker, Kristal Curtis, Mark Girolami, Ram Sriharsha:
A mixture modeling approach for clustering log files with coreset and user feedback. Pattern Recognit. Lett. 156: 74-80 (2022) - [c58]Marcelo Hartmann, Mark Girolami, Arto Klami:
Lagrangian manifold Monte Carlo on Monge patches. AISTATS 2022: 4764-4781 - [i40]Toni Karvonen, Fehmi Cirak, Mark Girolami:
Error analysis for a statistical finite element method. CoRR abs/2201.07543 (2022) - [i39]Marcelo Hartmann, Mark Girolami, Arto Klami:
Lagrangian Manifold Monte Carlo on Monge Patches. CoRR abs/2202.00755 (2022) - [i38]Alessandro Barp, Lancelot Da Costa, Guilherme França, Karl J. Friston, Mark A. Girolami, Michael I. Jordan, Grigorios A. Pavliotis:
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents. CoRR abs/2203.10592 (2022) - [i37]Lawrence A. Bull, Maharshi Harshadbhai Dhada, Olof Steinert, Tony Lindgren, Ajith Kumar Parlikad, Andrew B. Duncan, Mark Girolami:
Knowledge Transfer in Engineering Fleets: Hierarchical Bayesian Modelling for Multi-Task Learning. CoRR abs/2204.12404 (2022) - [i36]Arnaud Vadeboncoeur, Ömer Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami, Fehmi Cirak:
Deep Probabilistic Models for Forward and Inverse Problems in Parametric PDEs. CoRR abs/2208.04856 (2022) - [i35]Alessandro Barp, Carl-Johann Simon-Gabriel, Mark Girolami, Lester Mackey:
Targeted Separation and Convergence with Kernel Discrepancies. CoRR abs/2209.12835 (2022) - [i34]Thomas Gaskin, Grigorios A. Pavliotis, Mark Girolami:
Neural parameter calibration for large-scale multi-agent models. CoRR abs/2209.13565 (2022) - [i33]Alex Glyn-Davies, Connor Duffin, Ömer Deniz Akyildiz, Mark Girolami:
$Φ$-DVAE: Learning Physically Interpretable Representations with Nonlinear Filtering. CoRR abs/2209.15609 (2022) - [i32]Simon Hubbert, Emilio Porcu, Chris J. Oates, Mark Girolami:
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres. CoRR abs/2211.09196 (2022) - 2021
- [j76]Ashley Scillitoe, Pranay Seshadri, Mark Girolami:
Uncertainty quantification for data-driven turbulence modelling with Mondrian forests. J. Comput. Phys. 430: 110116 (2021) - [j75]George Wynne, François-Xavier Briol, Mark Girolami:
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness. J. Mach. Learn. Res. 22: 123:1-123:40 (2021) - [j74]Toni Karvonen, Chris J. Oates, Mark Girolami:
Integration in reproducing kernel Hilbert spaces of Gaussian kernels. Math. Comput. 90(331): 2209-2233 (2021) - [j73]Steven A. Niederer, Michael S. Sacks, Mark Girolami, Karen Willcox:
Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1(5): 313-320 (2021) - [i31]Eky Febrianto, Liam J. Butler, Mark Girolami, Fehmi Cirak:
A Self-Sensing Digital Twin of a Railway Bridge using the Statistical Finite Element Method. CoRR abs/2103.13729 (2021) - [i30]Andrea Marinoni, Saloua Chlaily, Eduard Khachatrian, Torbjørn Eltoft, Sivasakthy Selvakumaran, Mark Girolami, Christian Jutten:
Enhancing ensemble learning and transfer learning in multimodal data analysis by adaptive dimensionality reduction. CoRR abs/2105.03682 (2021) - [i29]B. Boys, Tim J. Dodwell, Mark Hobbs, Mark Girolami:
PeriPy - A High Performance OpenCL Peridynamics Package. CoRR abs/2105.04150 (2021) - [i28]Connor Duffin, Edward Cripps, Thomas Stemler, Mark Girolami:
Low-rank statistical finite elements for scalable model-data synthesis. CoRR abs/2109.04757 (2021) - [i27]Ömer Deniz Akyildiz, Connor Duffin, Sotirios Sabanis, Mark Girolami:
Statistical Finite Elements via Langevin Dynamics. CoRR abs/2110.11131 (2021) - [i26]Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew B. Duncan:
Theoretical Guarantees for the Statistical Finite Element Method. CoRR abs/2111.07691 (2021) - [i25]Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, Nikolas Nüsken:
Bayesian Learning via Neural Schrödinger-Föllmer Flows. CoRR abs/2111.10510 (2021) - [i24]Andrea Marinoni, Christian Jutten, Mark Girolami:
A graph representation based on fluid diffusion model for multimodal data analysis: theoretical aspects and enhanced community detection. CoRR abs/2112.04388 (2021) - 2020
- [j72]Karla Monterrubio-Gómez, Lassi Roininen, Sara Wade, Theodoros Damoulas, Mark Girolami:
Posterior inference for sparse hierarchical non-stationary models. Comput. Stat. Data Anal. 148: 106954 (2020) - [c57]Seppo Virtanen, Mark Girolami:
Dynamic content based ranking. AISTATS 2020: 2315-2324 - [i23]George Wynne, François-Xavier Briol, Mark A. Girolami:
Convergence Guarantees for Gaussian Process Approximations Under Several Observation Models. CoRR abs/2001.10818 (2020) - [i22]Toni Karvonen, Chris J. Oates, Mark Girolami:
Integration in reproducing kernel Hilbert spaces of Gaussian kernels. CoRR abs/2004.12654 (2020) - [i21]Rebecca Ward, Ruchi Choudhary, Alastair Gregory, Mark Girolami:
Continuous calibration of a digital twin: comparison of particle filter and Bayesian calibration approaches. CoRR abs/2011.09810 (2020) - [i20]Pranay Seshadri, Andrew B. Duncan, George Thorne, Geoffrey T. Parks, Mark Girolami:
Bayesian Assessments of Aeroengine Performance. CoRR abs/2011.14698 (2020)
2010 – 2019
- 2019
- [j71]Gishan Don Ranasinghe, Tony Lindgren, Mark Girolami, Ajith Kumar Parlikad:
A Methodology for Prognostics Under the Conditions of Limited Failure Data Availability. IEEE Access 7: 183996-184007 (2019) - [j70]Alastair Gregory, F. Din-Houn Lau, Mark A. Girolami, Liam J. Butler, Mohammed Z. E. B. Elshafie:
The synthesis of data from instrumented structures and physics-based models via Gaussian processes. J. Comput. Phys. 392: 248-265 (2019) - [j69]Mark A. Girolami, Ilse C. F. Ipsen, Chris J. Oates, Art B. Owen, Timothy John Sullivan:
Editorial: special edition on probabilistic numerics. Stat. Comput. 29(6): 1181-1183 (2019) - [j68]Jon Cockayne, Chris J. Oates, Timothy John Sullivan, Mark A. Girolami:
Bayesian Probabilistic Numerical Methods. SIAM Rev. 61(4): 756-789 (2019) - [c56]Wilson Ye Chen, Alessandro Barp, François-Xavier Briol, Jackson Gorham, Mark A. Girolami, Lester W. Mackey, Chris J. Oates:
Stein Point Markov Chain Monte Carlo. ICML 2019: 1011-1021 - [c55]Seppo Virtanen, Mark A. Girolami:
Precision-Recall Balanced Topic Modelling. NeurIPS 2019: 6747-6756 - [c54]Alessandro Barp, François-Xavier Briol, Andrew B. Duncan, Mark A. Girolami, Lester W. Mackey:
Minimum Stein Discrepancy Estimators. NeurIPS 2019: 12964-12976 - [c53]Oliver Hamelijnck, Theodoros Damoulas, Kangrui Wang, Mark A. Girolami:
Multi-resolution Multi-task Gaussian Processes. NeurIPS 2019: 14025-14035 - [i19]François-Xavier Briol, Alessandro Barp, Andrew B. Duncan, Mark A. Girolami:
Statistical Inference for Generative Models with Maximum Mean Discrepancy. CoRR abs/1906.05944 (2019) - [i18]Alessandro Barp, François-Xavier Briol, Andrew B. Duncan, Mark A. Girolami, Lester W. Mackey:
Minimum Stein Discrepancy Estimators. CoRR abs/1906.08283 (2019) - [i17]Oliver Hamelijnck, Theodoros Damoulas, Kangrui Wang, Mark A. Girolami:
Multi-resolution Multi-task Gaussian Processes. CoRR abs/1906.08344 (2019) - [i16]Chun Yui Wong, Pranay Seshadri, Geoffrey T. Parks, Mark A. Girolami:
Embedded Ridge Approximations: Constructing Ridge Approximations Over Localized Scalar Fields For Improved Simulation-Centric Dimension Reduction. CoRR abs/1907.07037 (2019) - 2018
- [j67]Matthew M. Dunlop, Mark A. Girolami, Andrew M. Stuart, Aretha L. Teckentrup:
How Deep Are Deep Gaussian Processes? J. Mach. Learn. Res. 19: 54:1-54:46 (2018) - [j66]Oisin Mac Aodha, Rory Gibb, Kate E. Barlow, Ella Browning, Michael Firman, Robin Freeman, Briana Harder, Libby Kinsey, Gary R. Mead, Stuart E. Newson, Ivan Pandourski, Stuart Parsons, Jon Russ, Abigel Szodoray-Paradi, Farkas Szodoray-Paradi, Elena Tilova, Mark A. Girolami, Gabriel J. Brostow, Kate E. Jones:
Bat detective - Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14(3) (2018) - [c52]Xiaoyue Xi, François-Xavier Briol, Mark A. Girolami:
Bayesian Quadrature for Multiple Related Integrals. ICML 2018: 5369-5378 - [i15]Xiaoyue Xi, François-Xavier Briol, Mark A. Girolami:
Bayesian Quadrature for Multiple Related Integrals. CoRR abs/1801.04153 (2018) - [i14]Jon Cockayne, Chris J. Oates, Mark A. Girolami:
A Bayesian Conjugate Gradient Method. CoRR abs/1801.05242 (2018) - [i13]François-Xavier Briol, Chris J. Oates, Mark A. Girolami, Michael A. Osborne, Dino Sejdinovic:
Rejoinder for "Probabilistic Integration: A Role in Statistical Computation?". CoRR abs/1811.10275 (2018) - [i12]Richard Scalzo, David Kohn, Hugo K. H. Olierook, Gregory Houseman, Rohitash Chandra, Mark A. Girolami, Sally Cripps:
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success. CoRR abs/1812.00318 (2018) - 2017
- [j65]Alexandros Beskos, Mark A. Girolami, Shiwei Lan, Patrick E. Farrell, Andrew M. Stuart:
Geometric MCMC for infinite-dimensional inverse problems. J. Comput. Phys. 335: 327-351 (2017) - [j64]Patrick R. Conrad, Mark A. Girolami, Simo Särkkä, Andrew M. Stuart, Konstantinos Zygalakis:
Statistical analysis of differential equations: introducing probability measures on numerical solutions. Stat. Comput. 27(4): 1065-1082 (2017) - [c51]François-Xavier Briol, Chris J. Oates, Jon Cockayne, Wilson Ye Chen, Mark A. Girolami:
On the Sampling Problem for Kernel Quadrature. ICML 2017: 586-595 - [c50]Chris J. Oates, Steven A. Niederer, Angela W. C. Lee, François-Xavier Briol, Mark A. Girolami:
Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models. NIPS 2017: 110-118 - [i11]Jon Cockayne, Chris J. Oates, Tim Sullivan, Mark A. Girolami:
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems. CoRR abs/1701.04006 (2017) - [i10]Jon Cockayne, Chris J. Oates, Tim Sullivan, Mark A. Girolami:
Bayesian Probabilistic Numerical Methods. CoRR abs/1702.03673 (2017) - [i9]Alessandro Barp, François-Xavier Briol, Anthony D. Kennedy, Mark A. Girolami:
Geometry and Dynamics for Markov Chain Monte Carlo. CoRR abs/1705.02891 (2017) - [i8]François-Xavier Briol, Chris J. Oates, Jon Cockayne, Wilson Ye Chen, Mark A. Girolami:
On the Sampling Problem for Kernel Quadrature. CoRR abs/1706.03369 (2017) - 2016
- [j63]Shiwei Lan, Tan Bui-Thanh, Mike Christie, Mark A. Girolami:
Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems. J. Comput. Phys. 308: 81-101 (2016) - [j62]Louis Ellam, Nicholas Zabaras, Mark A. Girolami:
A Bayesian approach to multiscale inverse problems with on-the-fly scale determination. J. Comput. Phys. 326: 115-140 (2016) - [c49]Chris J. Oates, Mark A. Girolami:
Control Functionals for Quasi-Monte Carlo Integration. AISTATS 2016: 56-65 - [i7]Jon Cockayne, Chris J. Oates, Tim Sullivan, Mark A. Girolami:
Probabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems. CoRR abs/1605.07811 (2016) - 2015
- [c48]Seppo Virtanen, Mark A. Girolami:
Ordinal Mixed Membership Models. ICML 2015: 588-596 - [c47]François-Xavier Briol, Chris J. Oates, Mark A. Girolami, Michael A. Osborne:
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees. NIPS 2015: 1162-1170 - [i6]Heiko Strathmann, Dino Sejdinovic, Mark A. Girolami:
Unbiased Bayes for Big Data: Paths of Partial Posteriors. CoRR abs/1501.03326 (2015) - [i5]Philipp Hennig, Michael A. Osborne, Mark A. Girolami:
Probabilistic Numerics and Uncertainty in Computations. CoRR abs/1506.01326 (2015) - [i4]François-Xavier Briol, Chris J. Oates, Mark A. Girolami, Michael A. Osborne, Dino Sejdinovic:
Probabilistic Integration. CoRR abs/1512.00933 (2015) - 2014
- [j61]Andrei Kramer, Vassilios Stathopoulos, Mark A. Girolami, Nicole Radde:
mcmc_clib-an advanced MCMC sampling package for ode models. Bioinform. 30(20): 2991-2992 (2014) - [j60]Samuel Livingstone, Mark A. Girolami:
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions. Entropy 16(6): 3074-3102 (2014) - [j59]Maurizio Filippone, Mark A. Girolami:
Pseudo-Marginal Bayesian Inference for Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 36(11): 2214-2226 (2014) - [c46]Vassilios Stathopoulos, Veronica Zamora-Gutierrez, Kate E. Jones, Mark A. Girolami:
Bat Call Identification with Gaussian Process Multinomial Probit Regression and a Dynamic Time Warping Kernel. AISTATS 2014: 913-921 - [c45]Oisin Mac Aodha, Vassilios Stathopoulos, Gabriel J. Brostow, Michael Terry, Mark A. Girolami, Kate E. Jones:
Putting the Scientist in the Loop - Accelerating Scientific Progress with Interactive Machine Learning. ICPR 2014: 9-17 - [c44]Oana Andrei, Muffy Calder, Matthew Higgs, Mark A. Girolami:
Probabilistic Model Checking of DTMC Models of User Activity Patterns. QEST 2014: 138-153 - [i3]Oana Andrei, Muffy Calder, Matthew Higgs, Mark A. Girolami:
Probabilistic Model Checking of DTMC Models of User Activity Patterns. CoRR abs/1403.6678 (2014) - 2013
- [j58]Maurizio Filippone, Mingjun Zhong, Mark A. Girolami:
A comparative evaluation of stochastic-based inference methods for Gaussian process models. Mach. Learn. 93(1): 93-114 (2013) - [j57]Tom Diethe, Mark A. Girolami:
Online Learning with (Multiple) Kernels: A Review. Neural Comput. 25(3): 567-625 (2013) - [c43]Matthew Higgs, Alistair Morrison, Mark A. Girolami, Matthew Chalmers:
Analysing user behaviour through dynamic population models. CHI Extended Abstracts 2013: 271-276 - [i2]Maurizio Filippone, Mark A. Girolami:
Exact-Approximate Bayesian Inference for Gaussian Processes. CoRR abs/1310.0740 (2013) - 2012
- [j56]Ke Yuan, Mark A. Girolami, Mahesan Niranjan:
Markov Chain Monte Carlo Methods for State-Space Models with Point Process Observations. Neural Comput. 24(6): 1462-1486 (2012) - [c42]Mingjun Zhong, Mark A. Girolami:
A Bayesian Approach to Approximate Joint Diagonalization of Square Matrices. ICML 2012 - [c41]Neil D. Lawrence, Mark A. Girolami:
Preface. AISTATS 2012 - [e6]Neil D. Lawrence, Mark A. Girolami:
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012. JMLR Proceedings 22, JMLR.org 2012 [contents] - [i1]Mingjun Zhong, Mark A. Girolami:
A Bayesian Approach to Approximate Joint Diagonalization of Square Matrices. CoRR abs/1206.4666 (2012) - 2011
- [b1]Simon Rogers, Mark A. Girolami:
A First Course in Machine Learning. Chapman and Hall / CRC machine learning and pattern recognition series, CRC Press 2011, ISBN 978-1-43-982414-6, pp. I-XX, 1-285 - [j55]Tamara Polajnar, Theodoros Damoulas, Mark A. Girolami:
Protein interaction sentence detection using multiple semantic kernels. J. Biomed. Semant. 2: 1 (2011) - [j54]Tamara Polajnar, Simon Rogers, Mark A. Girolami:
Protein interaction detection in sentences via Gaussian Processes: a preliminary evaluation. Int. J. Data Min. Bioinform. 5(1): 52-72 (2011) - [j53]Maurizio Filippone, Antonietta Mira, Mark A. Girolami:
Discussion of the paper: "Sampling schemes for generalized linear Dirichlet process random effects models" by M. Kyung, J. Gill, and G. Casella. Stat. Methods Appl. 20(3): 295-297 (2011) - [c40]Roberto Paredes, Mark A. Girolami:
On the Use of Diagonal and Class-Dependent Weighted Distances for the Probabilistic k-Nearest Neighbor. IbPRIA 2011: 265-272 - [c39]Hans Lehrach, Ralf Sudbrak, Peter Boyle, Markus Pasterk, Kurt Zatloukal, Heimo Müller, Tim Hubbard, Angela Brand, Mark A. Girolami, Daniel Jameson, Frank J. Bruggeman, Hans V. Westerhoff:
ITFoM - The IT Future of Medicine. FET 2011: 26-29 - [e5]Timo Honkela, Wlodzislaw Duch, Mark A. Girolami, Samuel Kaski:
Artificial Neural Networks and Machine Learning - ICANN 2011 - 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I. Lecture Notes in Computer Science 6791, Springer 2011, ISBN 978-3-642-21734-0 [contents] - [e4]Timo Honkela, Wlodzislaw Duch, Mark A. Girolami, Samuel Kaski:
Artificial Neural Networks and Machine Learning - ICANN 2011 - 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part II. Lecture Notes in Computer Science 6792, Springer 2011, ISBN 978-3-642-21737-1 [contents] - 2010
- [j52]Mohammed Dakna, Keith Harris, Alexandros Kalousis, Sebastien Carpentier, Walter Kolch, Joost P. Schanstra, Marion Haubitz, Antonia Vlahou, Harald Mischak, Mark A. Girolami:
Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers. BMC Bioinform. 11: 594 (2010) - [j51]Simon Rogers, Arto Klami, Janne Sinkkonen, Mark A. Girolami, Samuel Kaski:
Infinite factorization of multiple non-parametric views. Mach. Learn. 79(1-2): 201-226 (2010) - [j50]Simon Rogers, Mark A. Girolami, Tamara Polajnar:
Semi-parametric analysis of multi-rater data. Stat. Comput. 20(3): 317-334 (2010) - [j49]