


default search action
"SurvMaximin: Robust federated approach to transporting survival risk ..."
Xuan Wang et al. (2022)
- Xuan Wang
, Harrison G. Zhang
, Xin Xiong
, Chuan Hong, Griffin M. Weber
, Gabriel A. Brat
, Clara-Lea Bonzel
, Yuan Luo, Rui Duan, Nathan P. Palmer
, Meghan R. Hutch, Alba Gutiérrez-Sacristán
, Riccardo Bellazzi
, Luca Chiovato
, Kelly Cho
, Arianna Dagliati
, Hossein Estiri
, Noelia García-Barrio
, Romain Griffier, David A. Hanauer
, Yuk-Lam Ho
, John H. Holmes
, Mark S. Keller, Jeffrey G. Klann, Sehi L'Yi, Sara Lozano-Zahonero
, Sarah E. Maidlow
, Adeline Makoudjou, Alberto Malovini
, Bertrand Moal, Jason H. Moore, Michele Morris
, Danielle L. Mowery
, Shawn N. Murphy, Antoine Neuraz
, Kee Yuan Ngiam, Gilbert S. Omenn
, Lav P. Patel
, Miguel Pedrera-Jiménez
, Andrea Prunotto, Malarkodi J. Samayamuthu, Fernando J. Sanz Vidorreta, Emily Schriver
, Petra Schubert
, Pablo Serrano-Balazote
, Andrew M. South
, Amelia L. M. Tan, Byorn W. L. Tan, Valentina Tibollo
, Patric Tippmann
, Shyam Visweswaran, Zongqi Xia
, William Yuan, Daniela Zöller
, Isaac S. Kohane, Paul Avillach
, Zijian Guo, Tianxi Cai
:
SurvMaximin: Robust federated approach to transporting survival risk prediction models. J. Biomed. Informatics 134: 104176 (2022)

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.