


default search action
"Personalized federated learning for predicting disability progression in ..."
Ashkan Pirmani et al. (2025)
- Ashkan Pirmani, Edward De Brouwer, Adam Arany, Martijn Oldenhof, Antoine Passemiers, Axel Faes, Tomas Kalincik, Serkan Ozakbas, Riadh Gouider, Barbara Willekens, Dana Horáková, Eva Kubala Havrdova, Francesco Patti, Alexandre Prat, Alessandra Lugaresi, Valentina Tomassini, Pierre Grammond, Elisabetta Cartechini, Izanne Roos, Cavit Boz, Raed Alroughani, Maria Pia Amato, Katherine Buzzard, Jeannette Lechner-Scott, Joana Guimarães, Claudio Solaro, Oliver Gerlach, Aysun Soysal, Jens Kuhle, Jose Luis Sanchez-Menoyo, Daniele Spitaleri, Tunde Csepany, Bart Van Wijmeersch, Radek Ampapa, Julie Prevost, Samia J. Khoury, Vincent Van Pesch, Nevin John, Davide Maimone, Bianca Weinstock-Guttman, Guy Laureys, Pamela McCombe, Yolanda Blanco, Ayse Altintas, Abdullah Al-Asmi, Justin Garber, Anneke van der Walt, Helmut Butzkueven, Koen de Gans, Csilla Rozsa, Bruce Taylor, Talal Al-Harbi, Attila Sas, Cecilia Rajda, Orla Gray, Danny Decoo, William M. Carroll, Allan G. Kermode, Marzena Fabis-Pedrini, Deborah Mason, Angel Perez-Sempere, Mihaela Simu, Neil Shuey, Bhim Singhal, Marija Cauchi, Todd A. Hardy, Sudarshini Ramanathan, Patrice Lalive, Carmen-Adella Sirbu, Stella Hughes, Tamara Castillo Trivino, Liesbet M. Peeters, Yves Moreau:
Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data. npj Digit. Medicine 8(1) (2025)

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.