
DBLP XML Requests

Appendix to the paper “DBLP — Some Lessons Learned” (June 17, 2009)

Michael Ley
Universität Trier, Informatik

D–54286 Trier
Germany

ley@uni-trier.de

ABSTRACT
If your software needs only in a few facts from DBLP, down-
loading the entire dblp.xml file may be a too costly burden.
The web pages are intended for humans, wrappers are al-
ways exposed to the risk of formatting changes. In this ap-
pendix we describe a very basic API for DBLP. Our example
application for the API is a simple crawler which finds the
shortest path between two DBLP authors in the coauthor
graph. In addition the appendix lists code to map person
names to DBLP URLs.

DBLP Records
If you know the key of a DBLP record, you may retrieve the
record from the URL

http://dblp.uni-trier.de/rec/bibtex/key.xml

e.g. if you replace key by journals/acta/BayerM72, you
will get the bibliographic record of the famous B-tree paper:

<?xml version="1.0"?>
<dblp>

<article key="journals/acta/BayerM72"
mdate="2003-11-25">

<author>Rudolf Bayer</author>
<author>Edward M. McCreight</author>
<title>Organization and Maintenance

of Large Ordered Indices</title>
...

</article>
</dblp>

Obviously this looks like a version of the huge dblp.xml file
which has been shrunken to just one record. But there is
an important difference: The header does not refer to an
DTD and we do not use symbolic entities. All non-ASCII
characters are encoded by numeric entities, in the header the
encoding intentionally has not been specified. This pure-
ASCII XML document without symbolic entities may be
parsed very fast by a lightweight parser. The same encoding

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of Michael Ley. To copy
otherwise, or to republish, to post on servers or to redistribute to lists,
requires a fee and/or special permission from the author.
DBLP, University of Trier
Copyright 2009 Michael Ley.

is used by the other services described in the sequel of this
section.

Person Search
On http://dblp.uni-trier.de/ DBLP provides a primi-
tive form to search for persons inside the bibliography. If
you type in Schek, you will get an answer on page

http://dblp.uni-trier.de/search/author?author=Schek

This page is an HTML document. Modify the URL by in-
serting an ‘x’ after the question mark:

.../search/author?xauthor=Schek

and you will get an XML version of the answer page:

<?xml version="1.0"?>
<authors>

<author urlpt="s/Schek:Hans=J=ouml=rg">
Hans-Jörg Schek</author>

<author urlpt="s/Schekelmann:Andr=eacute=">
André Schekelmann</author>

</authors>

In the DBLP person search a query is interpreted as a set of
prefixes of name parts. If you enter a few words, you get the
names which include these words as prefixes of some name
parts. The query string and the names stored in DBLP
are broken in parts. The delimiters of this tokenizing are
spaces and punctuation marks. The punctuation marks are
not relevant for the matching. Ar-b-c. produces the same
result as Ar b c. The matching is not case-sensitive. The
order of the query words does not matter, i.e. the queries
Petra M A and M Petra A are equivalent. For words which
end with a $-sign, only exact matches of this word are shown.
Try the queries xi li, xi$li xi li$, and xili (xi$ li

and xi$li are equivalent).
As long as you restrict your query to ASCII (< 128) the

search engine matches ‘diacritic insensitive’, i.e. the query
moller matches moller, möller, møller, móller, etc. As
soon as your query contains any diacritic mark, the matching
becomes exact for diacritics. Now René matches René but
not Rene or Renè.

The preferred encoding to transmit the query is UTF-8.
As soon as the query contains a byte sequence which is ille-
gal in UTF-8, the incoming byte sequence is interpreted as
Latin-1. Additionally, the search engine understands sym-
bolic entities listed in dblp.dtd. The author search accepts
queries using the GET or the POST method. The answer

length has a hard limit: If the query produces more than
1000 hits, the result is truncated.

In the XML version the answer is enclosed in an authors

element. For each hit, it contains an author element with
the matching person name. For convenience we have added
the attribute urlpt to the author elements. This attribute
contains the essential part of the name-to-URL mapping, by
this for many applications it is no longer necessary to im-
plement the make file name function described in the ap-
pendix. To get the URL of a person page, a DBLPbURL,
indices/a-tree/, the urlpt value, and the .html suffix have
to be concatenated.

If this simple search engine for persons is not sufficient for
your purposes, you should implement your own one. The
text file

http://dblp.uni-trier.de/db/indices/AUTHORS

lists all DBLP person names except homonyms (see next
subsection). The encoding is pure ASCII, Latin-1 characters
are represented by symbolic entities, each line contains one
name.

Publications of a Person
The first part of a person page lists all known publications
this person is involved in. This information is available in
XML, too. Requests to URLs of the form

http://dblp.uni-trier.de/rec/pers/urlpt /xk

result in XML answers like (for urlpt = Wong:Curtis):

<?xml version="1.0"?>
<dblpperson name="Curtis Wong">

<dblpkey>journals/sigmod/Wong08</dblpkey>
<dblpkey>conf/chi/HuynhDBW05</dblpkey>
...

</dblpperson>

In the enclosing dblpperson element the attribute name spec-
ifies the person’s name. The keys of the bibliographic records
are contained in dblpkey elements. All records this person
is involved in either as author or in the role of an editor are
enumerated. If a “person record” has been created for this
person, it’s key is quoted ahead the regular bibliographic
records. The entry is marked by an attribute:

<dblpkey type="person record">homepages/...

Additional information is provided if homonyms are known:

<?xml version="1.0"?>
<dblpperson name="Michael Meier">

<homonym>m/Meier:Michael</homonym>
<homonym>m/Meier 0004:Michael</homonym>
<homonym>m/Meier 0003:Michael</homonym>
<dblpkey type="person record">

homepages/m/MichaelMeier2</dblpkey>
<dblpkey>conf/edbt/LausenMS08</dblpkey>
<dblpkey>journals/corr/abs-0812-3788</dblpkey>

</dblpperson>

Our example was requested from

.../rec/pers/m/Meier 0002:Michael/xk

i.e. these are the keys for Michael Meier with the ID suffix
0002. The name does not contain the ID suffix. For the

other Michael Meiers the urlpts are enumerated in homonym

elements in front of the key list. The person search only
returns the base name without ID suffix. For the query

.../search/author?xauthor=Michael+Meier

DBLP returns only

<?xml version="1.0"?>
<authors>

<author urlpt="m/Meier:Michael">
Michael Meier</author>

</authors>

but the homonym elements shown above make it easy to deal
with ambiguous person names.

Coauthors
If you load all bibliographic records of a person, it is a trivial
step to get the set of coauthors for this person. But loading
all bibliographic records may be expensive. The URLs

http://dblp.uni-trier.de/rec/pers/urlpt /xc

give direct access to the coauthor lists. For example

.../rec/pers/h/Halevy:Alon Y=/xc

returns the XML document

<?xml version="1.0"?>
<coauthors author="Alon Y. Halevy">

<author urlpt="a/Abiteboul:Serge"
count="3">Serge Abiteboul</author>

...

<author urlpt="z/Zhang:Yang"
count="2">Yang Zhang</author>

</coauthors>

The count attribute specifies the number of shared publica-
tions of the two persons.

In a future version we plan to extend the XMI API for
DBLP. Access to individual BHT files is not possible yet,
but it may be beneficial for applications which are interested
in the tables of contents pages. Indices for DOIs, ISBN and
other fields may be useful.

Shortest Path Algorithm
The java program1 documented in this section demonstrates
the use of one of the DBLP XML services described above.
It computes the shortest path between two DBLP authors
in the coauthor graph. The software works like a little
web crawler, it loads the information incrementally from the
DBLP server.

The program is structured in two classes: The shortest
path algorithm is a variant of the classic breasth-first algo-
rithm, it is shown in figure 1. The class Person shown in
figure 2 hides all DBLP specific implementation details from
the algorithms itself.

The interaction beween both classes is very simple: If
you have a Person object, you may ask it for its neighbors
by applying the method getCoauthors, which returns an
array of persons. You can attach a label to each person. A
label is an integer. setLabel creates a label, hasLabel tests

1An expanded version of this software is available from
http://dblp.uni-trier.de/xml/docu/

import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;

public class CoauthorPath {
private Person path[];

public CoauthorPath(Person p1, Person p2)
{ shortestPath(p1,p2); }

public Person[] getPath() { return path; }

private void tracing(int position) {
Person pNow, pNext;
int direction, i, label;

label = path[position].getLabel();
direction = Integer.signum(label);
label -= direction;
while (label != 0) {

pNow = path[position];
Person ca[] = pNow.getCoauthors();
for (i=0; i<ca.length; i++) {

pNext = ca[i];
if (!pNext.hasLabel())

continue;
if (pNext.getLabel() == label) {

position -= direction;
label -= direction;
path[position] = pNext;
break;

} } } }

private void shortestPath(Person p1, Person p2) {
Collection<Person> h,

now1 = new HashSet<Person>(),
now2 = new HashSet<Person>(),
next = new HashSet<Person>();

int direction, label, n;

Person.resetAllLabels();
if (p1 == null || p2 == null)

return;
if (p1 == p2) {

p1.setLabel(1);
path = new Person[1];
path[0] = p1;
return;

}

p1.setLabel(1); now1.add(p1);
p2.setLabel(-1); now2.add(p2);

while (true) {
if (now1.isEmpty() || now2.isEmpty())

return;

if (now2.size() < now1.size()) {
h = now1; now1 = now2; now2 = h;

}

Iterator<Person> nowI = now1.iterator();
while (nowI.hasNext()) {

Person pnow = nowI.next();
label = pnow.getLabel();
direction = Integer.signum(label);
Person neighbours[] = pnow.getCoauthors();
int i;
for (i=0; i<neighbours.length; i++) {

Person px = neighbours[i];
if (px.hasLabel()) {

if (Integer.signum(px.getLabel())
==direction)

continue;
if (direction < 0) {

Person ph;
ph = px; px = pnow; pnow = ph;

}
// pnow has a positive label,
// px a negative
n = pnow.getLabel() - px.getLabel();
path = new Person[n];
path[pnow.getLabel()-1] = pnow;
path[n+px.getLabel()] = px;
tracing(pnow.getLabel()-1);
tracing(n+px.getLabel());
return;

}
px.setLabel(label+direction);
next.add(px);

}
}
now1.clear(); h = now1; now1 = next; next = h;

}
}

}

Figure 1: A shortest path algorithm

import ...;

public class Person {
private static Map<String, Person> personMap =

new HashMap<String, Person>();
private String name;
private String urlpt;

private Person(String name, String urlpt) {
this.name = name;
this.urlpt = urlpt;
personMap.put(name, this);
coauthorsLoaded = false;
labelvalid = false;

}

static public Person create(String name, String urlpt) {
Person p;
p = searchPerson(name);
if (p == null)

p = new Person(name, urlpt);
return p;

}

static public Person searchPerson(String name) {
return personMap.get(name);

}

private boolean coauthorsLoaded;
private Person coauthors[];

static private SAXParser coauthorParser;
static private CAConfigHandler coauthorHandler;
static private List<Person> plist

= new ArrayList<Person>();

static private class CAConfigHandler
extends DefaultHandler {

private String Value, urlpt;
private boolean insideAuthor;

public void startElement(String namespaceURI,
String localName, String rawName,
Attributes atts) throws SAXException {

if (insideAuthor = rawName.equals("author")) {
Value = "";
urlpt = atts.getValue("urlpt");

} }

public void endElement(String namespaceURI,
String localName, String rawName)

throws SAXException {
if (rawName.equals("author") &&

Value.length() > 0) {
plist.add(create(Value, urlpt));

} }

public void characters(char[] ch, int start, int length)
throws SAXException {

if (insideAuthor)
Value += new String(ch, start, length);

}

public void warning(SAXParseException e)
throws SAXException { ... }

public void error(SAXParseException e)
throws SAXException { ... }

public void fatalError(SAXParseException e)
throws SAXException { ... }

}

static {
try { coauthorParser = SAXParserFactory.

newInstance().newSAXParser();
coauthorHandler = new CAConfigHandler();
coauthorParser.getXMLReader().setFeature(
"http://xml.org/sax/features/validation",
false);

} catch (ParserConfigurationException e) { ...
} catch (SAXException e) { ... }

}

private void loadCoauthors() {
if (coauthorsLoaded)

return;
plist.clear();
try { URL u = new URL(

"http://dblp.uni-trier.de/rec/pers/"
+urlpt+"/xc");

coauthorParser.parse(u.openStream(),
coauthorHandler);

} catch (IOException e) { ...
} catch (SAXException e) { ... }
coauthors = new Person[plist.size()];
coauthors = plist.toArray(coauthors);
coauthorsLoaded = true;

}

public Person[] getCoauthors() {
if (!coauthorsLoaded) { loadCoauthors(); }
return coauthors;

}

private int label;
private boolean labelvalid;

public int getLabel() { return (!labelvalid)?0:label; }
public void resetLabel() { labelvalid = false; }
public boolean hasLabel() { return labelvalid; }

public void setLabel(int label) {
this.label = label;
labelvalid = true;

}

static public void resetAllLabels() {
Iterator<Person> i = personMap.values().iterator();
while (i.hasNext()) {

Person p = i.next();
p.labelvalid = false;
p.label = 0;

} }

public String toString() { return name; }
}

Figure 2: The Class “Person”

if a label exists, and getLabel reads a label of a person.
The class method resetAllLabels deletes all labels from
persons. It is obvious that you may generalize this to a
simple interface to access any undirected graph (without
weights) from your shortest path algorithm.

To run the algorithm, you have to create two persons and
to construct a CoauthorPath object:

Person p1, p2;
p1 = Person.create("Jim Gray", "g/Gray:Jim");
p2 = Person.create(...);
CoauthorPath cp = new CoauthorPath(p1,p2);
Person path[] = cp.getPath();

After this you may print out the path.
Next we look at the class Person more closely. In the code

snipplet above it is noticeable that we use the class method
create to produce new Person objects. The class does not
have a public constructor because it caches all objects in a
class level Map. The create method first tests if there is
already an object for the specified name in personMap. A
new object is only created, if this test fails.

After creation a Person object only contains the person’s
name and the urlpt. The list of coauthors is only loaded
on demand2. The boolean field coauthorsLoaded contains
the required state information. If getCoauthors is called
for the first time, loadCoauthors is activated to fetch the
information from DBLP.

We use a SAX parser to read the XML file. Because
the creation of a SAX parser object is an expensive task,
the parser is reused. It is created in the static initializa-
tion block just above loadCoauthors at class load time.
Additionally the coauthorHandler field is initialised. In
loadCoauthors an URL object is constructed to provide an
InputStream for the parser. During the parsing process the
SAX parser calls the methods startElement, endElement,
and characters of the local CAConfigHandler. We are only
interested in author elements. The boolean insideAuthor

is set true as soon as we recognize an opening author tag.
characters collects the element contents in Value. In the
method endElement a Person object is created. The co-
authors are temporarily stored in plist. This List is con-
verted into the final coauthors array after parsing has been
completed.

To make the shortest path algorithm practicable over a
slow internet connection, we have to minimize the num-
ber co-author lists to be loaded. Two known optimiza-
tions of the breadth-first algorithm proved to be essential
for searches inside the huge connected component of the
DBLP coauthor graph: (1) The search has to start from
both persons, and (2) the algorithm should prefer the side
with the lower number of persons to be visited next. The
method CoauthorPath.shortestPath is a straightforward
implementation of these ideas.

The algorithm labels persons p1 with 1 and p2 with −1.
The direct neighbors of p1 are set 2, the direct neighbors
of p2 are set −2 etc. The variables now1 and now2 contain
the sets of persons who form the outer waves of the labeling
processes. The main loop flips the side where to advance
next depending on the size of these sets. During an expan-
sion step the still unvisited persons are collected in the set
next.

2In the online version of the class the same mechanism is
implemented for the list of publications of a person.

If now1 or now2 become empty, the persons are not con-
nected. If the two waves hit each other, the method tracing

is called to collect pathes from the meeting point to the
starting points.

make file name
This primitive C program shows the function which calcu-
lates the URL of a DBLP author page from a name. For
a production version, you should add some tests to prevent
buffer overflow attacks.

#include <stdlib.h>
typedef char line[10000];
line name array, file name array;

char map char(char x) {
if (isalnum(x)) return x;
return (x == ’ ’) ? ’ ’ : ’=’;

}
int is hidden suffix(char *x) {

if (x == NULL) return 0;
if (!isdigit(x[0]) || !isdigit(x[1]) ||

!isdigit(x[2]) || !isdigit(x[3])) return 0;
return x[4] == ’\0’;

}

char *make file name(char *name) {
int i = 0;
char c, *lname, *fname, *help;

strcpy(name array,name);
lname = strrchr(name array,’ ’);
if (lname) {
fname = name array;
*lname++ = ’\0’;
if (strcmp(lname,"Jr.")==0 ||

strcmp(lname,"II") ==0 ||
strcmp(lname,"III")==0 ||
strcmp(lname,"IV")==0 ||
is hidden suffix(lname)) {

help = strrchr(fname,’ ’);
if (help) {

--lname; *lname = ’ ’;
*help = ’\0’;
lname = help+1;

}
}

} else {
fname = strrchr(name array, ’\0’);
lname = name array;

}
if (lname)

while (c = *lname++)
file name array[i++] = map char(c);

file name array[i++] = ’:’;
if (fname)

while (c = *fname++)
file name array[i++] = map char(c);

file name array[i] = ’\0’;
return file name array;

}

void print keys url(char *name) {

char *s = make file name(name);
printf("http://dblp.uni-trier.de"
"/rec/pers/%c/%s/xk\n", tolower(*s),s);

}

main() {
print keys url("Lars Mönch");
print keys url("Chris van den Bos");
print keys url("Luqi");

}

