


default search action
28th COLT 2015: Paris, France
- Peter Grünwald, Elad Hazan, Satyen Kale:

Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015. JMLR Workshop and Conference Proceedings 40, JMLR.org 2015
Preface
- Peter Grünwald, Elad Hazan:

Conference on Learning Theory 2015: Preface. 1-3
Regular Papers
- Arpit Agarwal, Shivani Agarwal:

On Consistent Surrogate Risk Minimization and Property Elicitation. 4-22 - Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, Tomer Koren:

Online Learning with Feedback Graphs: Beyond Bandits. 23-35 - Animashree Anandkumar, Rong Ge, Majid Janzamin:

Learning Overcomplete Latent Variable Models through Tensor Methods. 36-112 - Sanjeev Arora, Rong Ge, Tengyu Ma, Ankur Moitra:

Simple, Efficient, and Neural Algorithms for Sparse Coding. 113-149 - Pranjal Awasthi, Moses Charikar, Kevin A. Lai, Andrej Risteski:

Label optimal regret bounds for online local learning. 150-166 - Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, Ruth Urner:

Efficient Learning of Linear Separators under Bounded Noise. 167-190 - Maria-Florina Balcan, Avrim Blum, Santosh S. Vempala:

Efficient Representations for Lifelong Learning and Autoencoding. 191-210 - Akshay Balsubramani, Yoav Freund:

Optimally Combining Classifiers Using Unlabeled Data. 211-225 - Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, Manfred K. Warmuth:

Minimax Fixed-Design Linear Regression. 226-239 - Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, Alexander Rakhlin:

Escaping the Local Minima via Simulated Annealing: Optimization of Approximately Convex Functions. 240-265 - Sébastien Bubeck, Ofer Dekel, Tomer Koren, Yuval Peres:

Bandit Convex Optimization: \(\sqrt{T}\) Regret in One Dimension. 266-278 - Sébastien Bubeck, Ronen Eldan:

The entropic barrier: a simple and optimal universal self-concordant barrier. 279 - Yang Cai

, Constantinos Daskalakis, Christos H. Papadimitriou:
Optimum Statistical Estimation with Strategic Data Sources. 280-296 - Nicolò Cesa-Bianchi, Yishay Mansour, Ohad Shamir:

On the Complexity of Learning with Kernels. 297-325 - Hubie Chen, Matthew Valeriote:

Learnability of Solutions to Conjunctive Queries: The Full Dichotomy. 326-337 - Yuxin Chen, S. Hamed Hassani, Amin Karbasi, Andreas Krause:

Sequential Information Maximization: When is Greedy Near-optimal? 338-363 - Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, Shang-Hua Teng:

Efficient Sampling for Gaussian Graphical Models via Spectral Sparsification. 364-390 - Peter Chin, Anup Rao, Van Vu:

Stochastic Block Model and Community Detection in Sparse Graphs: A spectral algorithm with optimal rate of recovery. 391-423 - Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Manfred K. Warmuth:

On-Line Learning Algorithms for Path Experts with Non-Additive Losses. 424-447 - Rachel Cummings, Stratis Ioannidis, Katrina Ligett:

Truthful Linear Regression. 448-483 - Amit Daniely:

A PTAS for Agnostically Learning Halfspaces. 484-502 - Gautam Dasarathy, Robert D. Nowak, Xiaojin Zhu:

S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification. 503-522 - Yash Deshpande, Andrea Montanari:

Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems. 523-562 - Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, Masrour Zoghi:

Contextual Dueling Bandits. 563-587 - Justin Eldridge, Mikhail Belkin, Yusu Wang:

Beyond Hartigan Consistency: Merge Distortion Metric for Hierarchical Clustering. 588-606 - Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapati, Ananda Theertha Suresh:

Faster Algorithms for Testing under Conditional Sampling. 607-636 - Uriel Feige, Yishay Mansour, Robert E. Schapire:

Learning and inference in the presence of corrupted inputs. 637-657 - Nicolas Flammarion, Francis R. Bach:

From Averaging to Acceleration, There is Only a Step-size. 658-695 - Dean P. Foster, Howard J. Karloff, Justin Thaler:

Variable Selection is Hard. 696-709 - Rafael M. Frongillo, Ian A. Kash:

Vector-Valued Property Elicitation. 710-727 - Roy Frostig, Rong Ge, Sham M. Kakade, Aaron Sidford:

Competing with the Empirical Risk Minimizer in a Single Pass. 728-763 - Pierre Gaillard, Sébastien Gerchinovitz:

A Chaining Algorithm for Online Nonparametric Regression. 764-796 - Rong Ge, Furong Huang, Chi Jin, Yang Yuan:

Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition. 797-842 - Nicolas Goix, Anne Sabourin, Stéphan Clémençon:

Learning the dependence structure of rare events: a non-asymptotic study. 843-860 - Aditya Gopalan, Shie Mannor:

Thompson Sampling for Learning Parameterized Markov Decision Processes. 861-898 - Bruce E. Hajek, Yihong Wu, Jiaming Xu:

Computational Lower Bounds for Community Detection on Random Graphs. 899-928 - Zaïd Harchaoui, Anatoli B. Juditsky, Arkadi Nemirovski, Dmitry Ostrovsky:

Adaptive Recovery of Signals by Convex Optimization. 929-955 - Samuel B. Hopkins, Jonathan Shi, David Steurer

:
Tensor principal component analysis via sum-of-square proofs. 956-1006 - Prateek Jain, Praneeth Netrapalli:

Fast Exact Matrix Completion with Finite Samples. 1007-1034 - Parameswaran Kamalaruban, Robert C. Williamson, Xinhua Zhang:

Exp-Concavity of Proper Composite Losses. 1035-1065 - Sudeep Kamath, Alon Orlitsky, Dheeraj Pichapati, Ananda Theertha Suresh:

On Learning Distributions from their Samples. 1066-1100 - Varun Kanade, Elchanan Mossel:

MCMC Learning. 1101-1128 - Zohar Shay Karnin, Edo Liberty:

Online with Spectral Bounds. 1129-1140 - Junpei Komiyama, Junya Honda, Hisashi Kashima, Hiroshi Nakagawa:

Regret Lower Bound and Optimal Algorithm in Dueling Bandit Problem. 1141-1154 - Wouter M. Koolen, Tim van Erven:

Second-order Quantile Methods for Experts and Combinatorial Games. 1155-1175 - Samory Kpotufe, Ruth Urner, Shai Ben-David:

Hierarchical Label Queries with Data-Dependent Partitions. 1176-1189 - Rasmus Kyng, Anup Rao, Sushant Sachdeva, Daniel A. Spielman:

Algorithms for Lipschitz Learning on Graphs. 1190-1223 - Jean Lafond:

Low Rank Matrix Completion with Exponential Family Noise. 1224-1243 - Jan Leike, Marcus Hutter:

Bad Universal Priors and Notions of Optimality. 1244-1259 - Tengyuan Liang, Alexander Rakhlin, Karthik Sridharan:

Learning with Square Loss: Localization through Offset Rademacher Complexity. 1260-1285 - Haipeng Luo, Robert E. Schapire:

Achieving All with No Parameters: AdaNormalHedge. 1286-1304 - Mehrdad Mahdavi, Lijun Zhang, Rong Jin:

Lower and Upper Bounds on the Generalization of Stochastic Exponentially Concave Optimization. 1305-1320 - Konstantin Makarychev, Yury Makarychev, Aravindan Vijayaraghavan:

Correlation Clustering with Noisy Partial Information. 1321-1342 - Issei Matsumoto, Kohei Hatano, Eiji Takimoto:

Online Density Estimation of Bradley-Terry Models. 1343-1359 - Gergely Neu:

First-order regret bounds for combinatorial semi-bandits. 1360-1375 - Behnam Neyshabur, Ryota Tomioka, Nathan Srebro:

Norm-Based Capacity Control in Neural Networks. 1376-1401 - Christos H. Papadimitriou, Santosh S. Vempala:

Cortical Learning via Prediction. 1402-1422 - Richard Peng, He Sun, Luca Zanetti:

Partitioning Well-Clustered Graphs: Spectral Clustering Works! 1423-1455 - Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg:

Batched Bandit Problems. 1456 - Alexander Rakhlin, Karthik Sridharan:

Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints. 1457-1479 - Patrick Rebeschini, Amin Karbasi:

Fast Mixing for Discrete Point Processes. 1480-1500 - Mark D. Reid, Rafael M. Frongillo, Robert C. Williamson, Nishant A. Mehta:

Generalized Mixability via Entropic Duality. 1501-1522 - Ohad Shamir:

On the Complexity of Bandit Linear Optimization. 1523-1551 - Hans Ulrich Simon:

An Almost Optimal PAC Algorithm. 1552-1563 - Jacob Steinhardt, John C. Duchi:

Minimax rates for memory-bounded sparse linear regression. 1564-1587 - Thomas Steinke, Jonathan R. Ullman:

Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery. 1588-1628 - Matus Telgarsky, Miroslav Dudík:

Convex Risk Minimization and Conditional Probability Estimation. 1629-1682 - Christos Thrampoulidis, Samet Oymak, Babak Hassibi:

Regularized Linear Regression: A Precise Analysis of the Estimation Error. 1683-1709 - Santosh S. Vempala, Ying Xiao:

Max vs Min: Tensor Decomposition and ICA with nearly Linear Sample Complexity. 1710-1723 - Huizhen Yu:

On Convergence of Emphatic Temporal-Difference Learning. 1724-1751
Open Problems
- Arindam Banerjee, Sheng Chen, Vidyashankar Sivakumar:

Open Problem: Restricted Eigenvalue Condition for Heavy Tailed Designs. 1752-1755 - Anna Choromanska, Yann LeCun, Gérard Ben Arous:

Open Problem: The landscape of the loss surfaces of multilayer networks. 1756-1760 - Cristóbal Guzmán:

Open Problem: The Oracle Complexity of Smooth Convex Optimization in Nonstandard Settings. 1761-1763 - Wouter M. Koolen, Manfred K. Warmuth, Dmitry Adamskiy:

Open Problem: Online Sabotaged Shortest Path. 1764-1766 - Jeremy Kun, Lev Reyzin:

Open Problem: Learning Quantum Circuits with Queries. 1767-1769 - Hans Ulrich Simon, Sandra Zilles:

Open Problem: Recursive Teaching Dimension Versus VC Dimension. 1770-1772

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














