default search action
Hisashi Kashima
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j39]Shonosuke Harada, Hisashi Kashima:
InfoCEVAE: treatment effect estimation with hidden confounding variables matching. Mach. Learn. 113(4): 1799-1817 (2024) - [j38]Guoxi Zhang, Hisashi Kashima:
Learning state importance for preference-based reinforcement learning. Mach. Learn. 113(4): 1885-1901 (2024) - [c154]Xiaotian Lu, Jiyi Li, Zhen Wan, Xiaofeng Lin, Koh Takeuchi, Hisashi Kashima:
Evaluating Saliency Explanations in NLP by Crowdsourcing. LREC/COLING 2024: 6431-6443 - [c153]Yu Mitsuzumi, Akisato Kimura, Hisashi Kashima:
Understanding and Improving Source-Free Domain Adaptation from a Theoretical Perspective. CVPR 2024: 28515-28524 - [c152]Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, Hisashi Kashima:
Treatment Effect Estimation Under Unknown Interference. PAKDD (2) 2024: 28-42 - [c151]Yuki Wakai, Koh Takeuchi, Hisashi Kashima:
Recovering Population Dynamics from a Single Point Cloud Snapshot. PAKDD (3) 2024: 302-315 - [i45]Guoxi Zhang, Han Bao, Hisashi Kashima:
Online Policy Learning from Offline Preferences. CoRR abs/2403.10160 (2024) - [i44]Ryota Maruo, Hisashi Kashima:
Efficient Preference Elicitation in Iterative Combinatorial Auctions with Many Participants. CoRR abs/2403.19075 (2024) - [i43]Xiaotian Lu, Jiyi Li, Zhen Wan, Xiaofeng Lin, Koh Takeuchi, Hisashi Kashima:
Evaluating Saliency Explanations in NLP by Crowdsourcing. CoRR abs/2405.10767 (2024) - [i42]Shun Ito, Hisashi Kashima:
Mitigating Cognitive Biases in Multi-Criteria Crowd Assessment. CoRR abs/2407.18938 (2024) - 2023
- [j37]Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, Hisashi Kashima:
Making individually fair predictions with causal pathways. Data Min. Knowl. Discov. 37(4): 1327-1373 (2023) - [c150]Guoxi Zhang, Hisashi Kashima:
Behavior Estimation from Multi-Source Data for Offline Reinforcement Learning. AAAI 2023: 11201-11209 - [c149]Ryosuke Ueda, Koh Takeuchi, Hisashi Kashima:
Mitigating Voter Attribute Bias for Fair Opinion Aggregation. AIES 2023: 170-180 - [c148]Akihiro Yamaguchi, Ken Ueno, Hisashi Kashima:
Time-series Shapelets with Learnable Lengths. CIKM 2023: 2866-2876 - [c147]Kosuke Yoshimura, Hisashi Kashima:
Label Selection Approach to Learning from Crowds. ICONIP (8) 2023: 207-221 - [c146]Koh Takeuchi, Ryo Nishida, Hisashi Kashima, Masaki Onishi:
Causal Effect Estimation on Hierarchical Spatial Graph Data. KDD 2023: 2145-2154 - [c145]Ryu Shirakami, Toshiya Kitahara, Koh Takeuchi, Hisashi Kashima:
QTNet: Theory-based Queue Length Prediction for Urban Traffic. KDD 2023: 4832-4841 - [c144]Shin'ya Yamaguchi, Daiki Chijiwa, Sekitoshi Kanai, Atsutoshi Kumagai, Hisashi Kashima:
Regularizing Neural Networks with Meta-Learning Generative Models. NeurIPS 2023 - [c143]Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, Han Bao, Koh Takeuchi, Hisashi Kashima:
Estimating Treatment Effects Under Heterogeneous Interference. ECML/PKDD (1) 2023: 576-592 - [c142]Xiaotian Lu, Jiyi Li, Koh Takeuchi, Hisashi Kashima:
Multiview Representation Learning from Crowdsourced Triplet Comparisons. WWW 2023: 3827-3836 - [e7]Hisashi Kashima, Tsuyoshi Idé, Wen-Chih Peng:
Advances in Knowledge Discovery and Data Mining - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part I. Lecture Notes in Computer Science 13935, Springer 2023, ISBN 978-3-031-33373-6 [contents] - [e6]Hisashi Kashima, Tsuyoshi Idé, Wen-Chih Peng:
Advances in Knowledge Discovery and Data Mining - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part II. Lecture Notes in Computer Science 13936, Springer 2023, ISBN 978-3-031-33376-7 [contents] - [e5]Hisashi Kashima, Tsuyoshi Idé, Wen-Chih Peng:
Advances in Knowledge Discovery and Data Mining - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part III. Lecture Notes in Computer Science 13937, Springer 2023, ISBN 978-3-031-33379-8 [contents] - [e4]Hisashi Kashima, Tsuyoshi Idé, Wen-Chih Peng:
Advances in Knowledge Discovery and Data Mining - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, 2023, Proceedings, Part IV. Lecture Notes in Computer Science 13938, Springer 2023, ISBN 978-3-031-33382-8 [contents] - [i41]Xiaotian Lu, Jiyi Li, Koh Takeuchi, Hisashi Kashima:
Multiview Representation Learning from Crowdsourced Triplet Comparisons. CoRR abs/2302.03987 (2023) - [i40]Ryosuke Ueda, Koh Takeuchi, Hisashi Kashima:
Mitigating Observation Biases in Crowdsourced Label Aggregation. CoRR abs/2302.13100 (2023) - [i39]Ryosuke Ueda, Koh Takeuchi, Hisashi Kashima:
Mitigating Voter Attribute Bias for Fair Opinion Aggregation. CoRR abs/2307.10749 (2023) - [i38]Shin'ya Yamaguchi, Daiki Chijiwa, Sekitoshi Kanai, Atsutoshi Kumagai, Hisashi Kashima:
Regularizing Neural Networks with Meta-Learning Generative Models. CoRR abs/2307.13899 (2023) - [i37]Kosuke Yoshimura, Hisashi Kashima:
Label Selection Approach to Learning from Crowds. CoRR abs/2308.10396 (2023) - [i36]Jill-Jênn Vie, Hisashi Kashima:
Deep Knowledge Tracing is an implicit dynamic multidimensional item response theory model. CoRR abs/2309.12334 (2023) - [i35]Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, Han Bao, Koh Takeuchi, Hisashi Kashima:
Estimating Treatment Effects Under Heterogeneous Interference. CoRR abs/2309.13884 (2023) - 2022
- [j36]Akira Tanimoto, So Yamada, Takashi Takenouchi, Masashi Sugiyama, Hisashi Kashima:
Improving imbalanced classification using near-miss instances. Expert Syst. Appl. 201: 117130 (2022) - [j35]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Poincare: Recommending Publication Venues via Treatment Effect Estimation. J. Informetrics 16(2): 101283 (2022) - [j34]Shogo Hayashi, Junya Honda, Hisashi Kashima:
Bayesian optimization with partially specified queries. Mach. Learn. 111(3): 1019-1048 (2022) - [j33]Maya Okawa, Tomoharu Iwata, Yusuke Tanaka, Takeshi Kurashima, Hiroyuki Toda, Hisashi Kashima:
Context-aware spatio-temporal event prediction via convolutional Hawkes processes. Mach. Learn. 111(8): 2929-2950 (2022) - [j32]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Constant Time Graph Neural Networks. ACM Trans. Knowl. Discov. Data 16(5): 92:1-92:31 (2022) - [c141]Sein Minn, Jill-Jênn Vie, Koh Takeuchi, Hisashi Kashima, Feida Zhu:
Interpretable Knowledge Tracing: Simple and Efficient Student Modeling with Causal Relations. AAAI 2022: 12810-12818 - [c140]Jill-Jênn Vie, Tomas Rigaux, Hisashi Kashima:
Variational Factorization Machines for Preference Elicitation in Large-Scale Recommender Systems. IEEE Big Data 2022: 5607-5614 - [c139]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Twin Papers: A Simple Framework of Causal Inference for Citations via Coupling. CIKM 2022: 4444-4448 - [c138]Guoxi Zhang, Jiyi Li, Hisashi Kashima:
Improving Pairwise Rank Aggregation via Querying for Rank Difference. DSAA 2022: 1-9 - [c137]Akihiro Yamaguchi, Ken Ueno, Hisashi Kashima:
Learning Evolvable Time-series Shapelets. ICDE 2022: 793-805 - [c136]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Re-evaluating Word Mover's Distance. ICML 2022: 19231-19249 - [c135]Ryosuke Ueda, Koh Takeuchi, Hisashi Kashima:
Mitigating Observation Biases in Crowdsourced Label Aggregation. ICPR 2022: 1171-1177 - [c134]Hiroshi Takahashi, Tomoharu Iwata, Atsutoshi Kumagai, Sekitoshi Kanai, Masanori Yamada, Yuki Yamanaka, Hisashi Kashima:
Learning Optimal Priors for Task-Invariant Representations in Variational Autoencoders. KDD 2022: 1739-1748 - [c133]Guoxi Zhang, Hisashi Kashima:
Batch Reinforcement Learning from Crowds. ECML/PKDD (4) 2022: 38-51 - [c132]Akihiro Yamaguchi, Ken Ueno, Hisashi Kashima:
Learning Time-series Shapelets Enhancing Discriminability. SDM 2022: 190-198 - [c131]Yoichi Chikahara, Makoto Yamada, Hisashi Kashima:
Feature selection for discovering distributional treatment effect modifiers. UAI 2022: 400-410 - [e3]Yasufumi Takama, Naohiro Matsumura, Katsutoshi Yada, Mitsunori Matsushita, Daisuke Katagami, Akinori Abe, Hisashi Kashima, Toshihiro Hiraoka, Takahiro Uchiya, Rafal Rzepka:
Advances in Artificial Intelligence - Selected Papers from the Annual Conference of Japanese Society of Artificial Intelligence, JSAI 2021, Virtual Event, Japan, 8-11 June 2021. Advances in Intelligent Systems and Computing 1423, Springer 2022, ISBN 978-3-030-96450-4 [contents] - [i34]Shin'ya Yamaguchi, Sekitoshi Kanai, Atsutoshi Kumagai, Daiki Chijiwa, Hisashi Kashima:
Transfer Learning with Pre-trained Conditional Generative Models. CoRR abs/2204.12833 (2022) - [i33]Yoichi Chikahara, Makoto Yamada, Hisashi Kashima:
Feature Selection for Discovering Distributional Treatment Effect Modifiers. CoRR abs/2206.00516 (2022) - [i32]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Twin Papers: A Simple Framework of Causal Inference for Citations via Coupling. CoRR abs/2208.09862 (2022) - [i31]Hisashi Kashima, Satoshi Oyama, Hiromi Arai, Junichiro Mori:
Trustworthy Human Computation: A Survey. CoRR abs/2210.12324 (2022) - [i30]Guoxi Zhang, Hisashi Kashima:
Behavior Estimation from Multi-Source Data for Offline Reinforcement Learning. CoRR abs/2211.16078 (2022) - [i29]Jill-Jênn Vie, Tomas Rigaux, Hisashi Kashima:
Variational Factorization Machines for Preference Elicitation in Large-Scale Recommender Systems. CoRR abs/2212.09920 (2022) - 2021
- [j31]Jiuding Duan, Hisashi Kashima:
Learning to Rank for Multi-Step Ahead Time-Series Forecasting. IEEE Access 9: 49372-49386 (2021) - [c130]Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, Hisashi Kashima:
Learning Individually Fair Classifier with Path-Specific Causal-Effect Constraint. AISTATS 2021: 145-153 - [c129]Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima:
Regret Minimization for Causal Inference on Large Treatment Space. AISTATS 2021: 946-954 - [c128]Koh Takeuchi, Ryo Nishida, Hisashi Kashima, Masaki Onishi:
Grab the Reins of Crowds: Estimating the Effects of Crowd Movement Guidance Using Causal Inference. AAMAS 2021: 1290-1298 - [c127]Toshihiro Kamishima, Shotaro Akaho, Yukino Baba, Hisashi Kashima:
Preliminary Experiments to Examine the Stability of Bias-Aware Techniques. BIAS 2021: 25-35 - [c126]Shonosuke Harada, Hisashi Kashima:
GraphITE: Estimating Individual Effects of Graph-structured Treatments. CIKM 2021: 659-668 - [c125]Ayato Toyokuni, Sho Yokoi, Hisashi Kashima, Makoto Yamada:
Computationally Efficient Wasserstein Loss for Structured Labels. EACL (Student Research Workshop) 2021: 1-7 - [c124]Jiyi Li, Lucas Ryo Endo, Hisashi Kashima:
Label Aggregation for Crowdsourced Triplet Similarity Comparisons. ICONIP (6) 2021: 176-185 - [c123]Shu Nakamura, Koh Takeuchi, Hisashi Kashima, Takeshi Kishikawa, Takashi Ushio, Tomoyuki Haga, Takamitsu Sasaki:
In-Vehicle Network Attack Detection Across Vehicle Models: A Supervised-Unsupervised Hybrid Approach. ITSC 2021: 1286-1291 - [c122]Maya Okawa, Tomoharu Iwata, Yusuke Tanaka, Hiroyuki Toda, Takeshi Kurashima, Hisashi Kashima:
Dynamic Hawkes Processes for Discovering Time-evolving Communities' States behind Diffusion Processes. KDD 2021: 1276-1286 - [c121]Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima:
Causal Combinatorial Factorization Machines for Set-Wise Recommendation. PAKDD (2) 2021: 498-509 - [c120]Luu Huu Phuc, Koh Takeuchi, Seiji Okajima, Arseny Tolmachev, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima:
Inter-domain Multi-relational Link Prediction. ECML/PKDD (2) 2021: 285-301 - [c119]Xiaotian Lu, Arseny Tolmachev, Tatsuya Yamamoto, Koh Takeuchi, Seiji Okajima, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima:
Crowdsourcing Evaluation of Saliency-Based XAI Methods. ECML/PKDD (5) 2021: 431-446 - [c118]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Random Features Strengthen Graph Neural Networks. SDM 2021: 333-341 - [e2]Katsutoshi Yada, Daisuke Katagami, Yasufumi Takama, Takayuki Ito, Akinori Abe, Eri Sato-Shimokawara, Junichiro Mori, Naohiro Matsumura, Hisashi Kashima:
Advances in Artificial Intelligence - Selected Papers from the Annual Conference of Japanese Society of Artificial Intelligence, JSAI 2020, Kumamoto-ken, Japan, 9-12 June 2020. Advances in Intelligent Systems and Computing 1357, Springer 2021, ISBN 978-3-030-73112-0 [contents] - [i28]Ayato Toyokuni, Sho Yokoi, Hisashi Kashima, Makoto Yamada:
Computationally Efficient Wasserstein Loss for Structured Labels. CoRR abs/2103.00899 (2021) - [i27]Maya Okawa, Tomoharu Iwata, Yusuke Tanaka, Hiroyuki Toda, Takeshi Kurashima, Hisashi Kashima:
Dynamic Hawkes Processes for Discovering Time-evolving Communities' States behind Diffusion Processes. CoRR abs/2105.11152 (2021) - [i26]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Re-evaluating Word Mover's Distance. CoRR abs/2105.14403 (2021) - [i25]Luu Huu Phuc, Koh Takeuchi, Seiji Okajima, Arseny Tolmachev, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima:
Inter-domain Multi-relational Link Prediction. CoRR abs/2106.06171 (2021) - [i24]Xiaotian Lu, Arseny Tolmachev, Tatsuya Yamamoto, Koh Takeuchi, Seiji Okajima, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima:
Crowdsourcing Evaluation of Saliency-based XAI Methods. CoRR abs/2107.00456 (2021) - [i23]Guoxi Zhang, Hisashi Kashima:
Batch Reinforcement Learning from Crowds. CoRR abs/2111.04279 (2021) - [i22]Sein Minn, Jill-Jênn Vie, Koh Takeuchi, Hisashi Kashima, Feida Zhu:
Interpretable Knowledge Tracing: Simple and Efficient Student Modeling with Causal Relations. CoRR abs/2112.11209 (2021) - 2020
- [j30]Shonosuke Harada, Hirotaka Akita, Masashi Tsubaki, Yukino Baba, Ichigaku Takigawa, Yoshihiro Yamanishi, Hisashi Kashima:
Dual graph convolutional neural network for predicting chemical networks. BMC Bioinform. 21-S(3): 94 (2020) - [j29]Shun Ito, Yukino Baba, Tetsu Isomura, Hisashi Kashima:
Synthetic accessibility assessment using auxiliary responses. Expert Syst. Appl. 145: 113106 (2020) - [c117]Luu Huu Phuc, Koh Takeuchi, Makoto Yamada, Hisashi Kashima:
Simultaneous Link Prediction on Unaligned Networks Using Graph Embedding and Optimal Transport. DSAA 2020: 245-254 - [c116]Hitoshi Kusano, Yuji Horiguchi, Yukino Baba, Hisashi Kashima:
Stress Prediction from Head Motion. DSAA 2020: 488-495 - [c115]Tatsuya Shiraishi, Tam Le, Hisashi Kashima, Makoto Yamada:
Topological Bayesian Optimization with Persistence Diagrams. ECAI 2020: 1483-1490 - [c114]Yukino Baba, Jiyi Li, Hisashi Kashima:
CrowDEA: Multi-View Idea Prioritization with Crowds. HCOMP 2020: 23-32 - [c113]Yasutoshi Ida, Sekitoshi Kanai, Yasuhiro Fujiwara, Tomoharu Iwata, Koh Takeuchi, Hisashi Kashima:
Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance. ICML 2020: 4594-4603 - [c112]Yan Gu, Jiuding Duan, Hisashi Kashima:
An Intransitivity Model for Matchup and Pairwise Comparison. ICPR 2020: 692-698 - [c111]Jiyi Li, Yasushi Kawase, Yukino Baba, Hisashi Kashima:
Performance as a Constraint: An Improved Wisdom of Crowds Using Performance Regularization. IJCAI 2020: 1534-1541 - [c110]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Fast Unbalanced Optimal Transport on a Tree. NeurIPS 2020 - [c109]Shonosuke Harada, Hisashi Kashima:
Counterfactual Propagation for Semi-supervised Individual Treatment Effect Estimation. ECML/PKDD (1) 2020: 542-558 - [i21]Ryoma Sato, Marco Cuturi, Makoto Yamada, Hisashi Kashima:
Fast and Robust Comparison of Probability Measures in Heterogeneous Spaces. CoRR abs/2002.01615 (2020) - [i20]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Random Features Strengthen Graph Neural Networks. CoRR abs/2002.03155 (2020) - [i19]Shonosuke Harada, Hisashi Kashima:
Counterfactual Propagation for Semi-Supervised Individual Treatment Effect Estimation. CoRR abs/2005.05099 (2020) - [i18]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Fast Unbalanced Optimal Transport on Tree. CoRR abs/2006.02703 (2020) - [i17]Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, Hisashi Kashima:
Regret Minimization for Causal Inference on Large Treatment Space. CoRR abs/2006.05616 (2020) - [i16]Yukino Baba, Jiyi Li, Hisashi Kashima:
CrowDEA: Multi-view Idea Prioritization with Crowds. CoRR abs/2008.02354 (2020) - [i15]Yang Liu, Hisashi Kashima:
Chemical Property Prediction Under Experimental Biases. CoRR abs/2009.08687 (2020) - [i14]Shonosuke Harada, Hisashi Kashima:
GraphITE: Estimating Individual Effects of Graph-structured Treatments. CoRR abs/2009.14061 (2020) - [i13]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Poincare: Recommending Publication Venues via Treatment Effect Estimation. CoRR abs/2010.09157 (2020)
2010 – 2019
- 2019
- [c108]Jill-Jênn Vie, Hisashi Kashima:
Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing. AAAI 2019: 750-757 - [c107]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Learning to Sample Hard Instances for Graph Algorithms. ACML 2019: 503-518 - [c106]Shogo Hayashi, Yoshinobu Kawahara, Hisashi Kashima:
Active Change-Point Detection. ACML 2019: 1017-1032 - [c105]Takeru Sunahase, Yukino Baba, Hisashi Kashima:
Probabilistic Modeling of Peer Correction and Peer Assessment. EDM 2019 - [c104]Kosuke Yoshimura, Tomoaki Iwase, Yukino Baba, Hisashi Kashima:
Interdependence Model for Multi-label Classification. ICANN (4) 2019: 55-68 - [c103]Yusuke Sakata, Yukino Baba, Hisashi Kashima:
Crownn: Human-in-the-loop Network with Crowd-generated Inputs. ICASSP 2019: 7555-7559 - [c102]Shogo Hayashi, Akira Tanimoto, Hisashi Kashima:
Long-Term Prediction of Small Time-Series Data Using Generalized Distillation. IJCNN 2019: 1-8 - [c101]Daiki Tanaka, Makoto Yamada, Hisashi Kashima, Takeshi Kishikawa, Tomoyuki Haga, Takamitsu Sasaki:
In-Vehicle Network Intrusion Detection and Explanation Using Density Ratio Estimation. ITSC 2019: 2238-2243 - [c100]Yasutoshi Ida, Yasuhiro Fujiwara, Hisashi Kashima:
Fast Sparse Group Lasso. NeurIPS 2019: 1700-1708 - [c99]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Approximation Ratios of Graph Neural Networks for Combinatorial Problems. NeurIPS 2019: 4083-4092 - [c98]Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cédric Gouy-Pailler, Jamal Atif:
Theoretical evidence for adversarial robustness through randomization. NeurIPS 2019: 11838-11848 - [c97]Shonosuke Harada, Kazuki Taniguchi, Makoto Yamada, Hisashi Kashima:
Context-Regularized Neural Collaborative Filtering for Game App Recommendation. RecSys (Late-Breaking Results) 2019: 16-20 - [c96]Daiki Tanaka, Yukino Baba, Hisashi Kashima, Yuta Okubo:
Large-scale Driver Identification Using Automobile Driving Data. SMC 2019: 3441-3446 - [i12]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Constant Time Graph Neural Networks. CoRR abs/1901.07868 (2019) - [i11]Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cédric Gouy-Pailler, Jamal Atif:
Theoretical evidence for adversarial robustness through randomization: the case of the Exponential family. CoRR abs/1902.01148 (2019) - [i10]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Learning to Find Hard Instances of Graph Problems. CoRR abs/1902.09700 (2019) - [i9]Tatsuya Shiraishi, Tam Le, Hisashi Kashima, Makoto Yamada:
Topological Bayesian Optimization with Persistence Diagrams. CoRR abs/1902.09722 (2019) - [i8]Ryoma Sato, Makoto Yamada, Hisashi Kashima:
Approximation Ratios of Graph Neural Networks for Combinatorial Problems. CoRR abs/1905.10261 (2019) - 2018
- [j28]Takuya Kuwahara, Yukino Baba, Hisashi Kashima, Takeshi Kishikawa, Jun'ichi Tsurumi, Tomoyuki Haga, Yoshihiro Ujiie, Takamitsu Sasaki, Hideki Matsushima:
Supervised and Unsupervised Intrusion Detection Based on CAN Message Frequencies for In-vehicle Network. J. Inf. Process. 26: 306-313 (2018) - [c95]Ryusuke Takahama, Yukino Baba, Nobuyuki Shimizu, Sumio Fujita, Hisashi Kashima:
AdaFlock: Adaptive Feature Discovery for Human-in-the-loop Predictive Modeling. AAAI 2018: 1619-1626 - [c94]Yukino Baba, Tomoumi Takase, Kyohei Atarashi, Satoshi Oyama, Hisashi Kashima:
Data Analysis Competition Platform for Educational Purposes: Lessons Learned and Future Challenges. AAAI 2018: 7887-7892 - [c93]Junpei Naito, Yukino Baba, Hisashi Kashima, Takenori Takaki, Takuya Funo:
Predictive Modeling of Learning Continuation in Preschool Education Using Temporal Patterns of Development Tests. AAAI 2018: 7934-7940 - [c92]