


default search action
13th ECML 2002: Helsinki, Finland
- Tapio Elomaa, Heikki Mannila, Hannu Toivonen:

Machine Learning: ECML 2002, 13th European Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002, Proceedings. Lecture Notes in Computer Science 2430, Springer 2002, ISBN 3-540-44036-4
Contributed Papers
- Bikramjit Banerjee, Jing Peng:

Convergent Gradient Ascent in General-Sum Games. 1-9 - Stephen D. Bay, Daniel G. Shapiro, Pat Langley:

Revising Engineering Models: Combining Computational Discovery with Knowledge. 10-22 - Wray L. Buntine:

Variational Extensions to EM and Multinomial PCA. 23-34 - Xavier Carreras

, Lluís Màrquez, Vasin Punyakanok, Dan Roth:
Learning and Inference for Clause Identification. 35-47 - Honghua Dai, Gang Li

, Yiqing Tu:
An Empirical Study of Encoding Schemes and Search Strategies in Discovering Causal Networks. 48-59 - Philip Derbeko, Ran El-Yaniv, Ron Meir:

Variance Optimized Bagging. 60-71 - Günther Eibl, Karl Peter Pfeiffer:

How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code. 72-83 - Yaakov Engel, Shie Mannor

, Ron Meir:
Sparse Online Greedy Support Vector Regression. 84-96 - Johannes Fürnkranz:

Pairwise Classification as an Ensemble Technique. 97-110 - Grzegorz Góra, Arkadiusz Wojna:

RIONA: A Classifier Combining Rule Induction and k-NN Method with Automated Selection of Optimal Neighbourhood. 111-123 - Ole Martin Halck:

Using Hard Classifiers to Estimate Conditional Class Probabilities. 124-134 - Harlan D. Harris:

Evidence that Incremental Delta-Bar-Delta Is an Attribute-Efficient Linear Learner. 135-147 - Susanne Hoche, Stefan Wrobel:

Scaling Boosting by Margin-Based Inclusionof Features and Relations. 148-160 - Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, Mark Hall:

Multiclass Alternating Decision Trees. 161-172 - Eyke Hüllermeier:

Possibilistic Induction in Decision-Tree Learning. 173-184 - Christopher Kermorvant, Pierre Dupont:

Improved Smoothing for Probabilistic Suffix Trees Seen as Variable Order Markov Chains. 185-194 - Stefan Klink, Armin Hust, Markus Junker, Andreas Dengel:

Collaborative Learning of Term-Based Concepts for Automatic Query Expansion. 195-206 - Tony Kråkenes, Ole Martin Halck:

Learning to Play a Highly Complex Game from Human Expert Games. 207-218 - Matjaz Kukar, Igor Kononenko:

Reliable Classifications with Machine Learning. 219-231 - Nicholas Kushmerick:

Robustness Analyses of Instance-Based Collaborative Recommendation. 232-244 - Stephen Kwek, Chau Nguyen:

iBoost: Boosting Using an i nstance-Based Exponential Weighting Scheme. 245-257 - Marcus-Christopher Ludl, Gerhard Widmer:

Towards a Simple Clustering Criterion Based on Minimum Length Encoding. 258-269 - Dragos D. Margineantu:

Class Probability Estimation and Cost-Sensitive Classification Decisions. 270-281 - Mario Martín

:
On-Line Support Vector Machine Regression. 282-294 - Ishai Menache, Shie Mannor

, Nahum Shimkin:
Q-Cut - Dynamic Discovery of Sub-goals in Reinforcement Learning. 295-306 - Katharina Morik, Stefan Rüping:

A Multistrategy Approach to the Classification of Phases in Business Cycles. 307-318 - Richard Nock, Patrice Lefaucheur:

A Robust Boosting Algorithm. 319-330 - Santiago Ontañón, Enric Plaza

:
Case Exchange Strategies in Multiagent Learning. 331-344 - Harris Papadopoulos

, Kostas Proedrou, Volodya Vovk, Alex Gammerman:
Inductive Confidence Machines for Regression. 345-356 - Lourdes Peña Castillo, Stefan Wrobel:

Macro-Operators in Multirelational Learning: A Search-Space Reduction Technique. 357-368 - Philippe Preux:

Propagation of Q-values in Tabular TD(lambda). 369-380 - Kostas Proedrou, Ilia Nouretdinov, Volodya Vovk, Alex Gammerman:

Transductive Confidence Machines for Pattern Recognition. 381-390 - Bohdana Ratitch, Doina Precup:

Characterizing Markov Decision Processes. 391-404 - Ulrich Rückert, Stefan Kramer, Luc De Raedt

:
Phase Transitions and Stochastic Local Search in k-Term DNF Learning. 405-417 - Janne Sinkkonen, Samuel Kaski, Janne Nikkilä:

Discriminative Clustering: Optimal Contingency Tables by Learning Metrics. 418-430 - Franck Thollard, Marc Sebban, Philippe Ézéquel:

Boosting Density Function Estimators. 431-443 - Ljupco Todorovski, Hendrik Blockeel

, Saso Dzeroski
:
Ranking with Predictive Clustering Trees. 444-455 - Ioannis Tsochantaridis, Thomas Hofmann:

Support Vector Machines for Polycategorical Classification. 456-467 - Jean-Noël Vittaut

, Massih-Reza Amini, Patrick Gallinari:
Learning Classification with Both Labeled and Unlabeled Data. 468-479 - Chen-Hsiang Yeang:

An Information Geometric Perspective on Active Learning. 480-492 - Bernard Zenko, Saso Dzeroski

:
Stacking with an Extended Set of Meta-level Attributes and MLR. 493-504
Invited Papers
- Erkki Oja:

Finding Hidden Factors Using Independent Component Analysis. 505 - Dan Roth:

Reasoning with Classifiers. 506-510 - Bernhard Schölkopf, Jason Weston, Eleazar Eskin, Christina S. Leslie, William Stafford Noble:

A Kernel Approach for Learning from almost Orthogonal Patterns. 511-528 - Padhraic Smyth

:
Learning with Mixture Models: Concepts and Applications. 529-

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














