


default search action
LLM4CODE@ICSE 2024: Lisbon, Portugal
- Proceedings of the 1st International Workshop on Large Language Models for Code, LLM4Code 2024, Lisbon, Portugal, 20 April 2024. ACM 2024, ISBN 979-8-4007-0579-3 [contents]

- Rudolf Ramler

, Michael Moser
, Lukas Fischer
, Markus Nissl
, René Heinzl
:
Industrial Experience Report on AI-Assisted Coding in Professional Software Development. 1-7 - Krerkkiat Chusap

, Chang Liu
:
Gauging Tech Community Acceptance of Rapid Prototyping in Unfamiliar Programming Languages using LLM Chatbots. 8-13 - Sanyogita Piya

, Allison Sullivan
:
LLM4TDD: Best Practices for Test Driven Development Using Large Language Models. 14-21 - Heiko Koziolek

, Sten Grüner
, Rhaban Hark
, Virendra Ashiwal
, Sofia Linsbauer
, Nafise Eskandani
:
LLM-based and Retrieval-Augmented Control Code Generation. 22-29 - Tina Vartziotis

, Ippolyti Dellatolas
, George Dasoulas
, Maximilian Schmidt
, Florian Schneider
, Tim Hoffmann
, Sotirios Kotsopoulos
, Michael Keckeisen
:
Learn to Code Sustainably: An Empirical Study on Green Code Generation. 30-37 - Heiko Koziolek

, Anne Koziolek
:
LLM-based Control Code Generation using Image Recognition. 38-45 - Shubham Gandhi

, Manasi Patwardhan
, Jyotsana Khatri
, Lovekesh Vig
, Raveendra Kumar Medicherla
:
Translation of Low-Resource COBOL to Logically Correct and Readable Java leveraging High-Resource Java Refinement. 46-53 - Shreya Bhatia

, Tarushi Gandhi
, Dhruv Kumar
, Pankaj Jalote
:
Unit Test Generation using Generative AI : A Comparative Performance Analysis of Autogeneration Tools. 54-61 - Kaiser Pister

, Dhruba Jyoti Paul
, Ishan Joshi
, Patrick Brophy
:
PromptSet: A Programmer's Prompting Dataset. 62-69 - Yichen Li

, Yun Peng
, Yintong Huo
, Michael R. Lyu
:
Enhancing LLM-Based Coding Tools through Native Integration of IDE-Derived Static Context. 70-74 - Shengbei Jiang

, Jiabao Zhang
, Wei Chen
, Bo Wang
, Jianyi Zhou
, Jie Zhang
:
Evaluating Fault Localization and Program Repair Capabilities of Existing Closed-Source General-Purpose LLMs. 75-78 - Haoxiang Fei

, Yu Zhang
, Hongbo Zhang
, Yanlin Wang
, Qing Liu
:
MoonBit: Explore the Design of an AI-Friendly Programming Language. 79-83 - Gábor Antal

, Richárd Vozár
, Rudolf Ferenc
:
Toward a New Era of Rapid Development: Assessing GPT-4-Vision's Capabilities in UML-Based Code Generation. 84-87 - Smitha S. Kumar

, Michael Adam Lones
, Manuel Maarek
, Hind Zantout
:
Investigating the Proficiency of Large Language Models in Formative Feedback Generation for Student Programmers. 88-93 - Adam Dingle

, Martin Krulis
:
Tackling Students' Coding Assignments with LLMs. 94-101 - Skyler Grandel

, Douglas C. Schmidt
, Kevin Leach
:
Applying Large Language Models to Enhance the Assessment of Parallel Functional Programming Assignments. 102-110 - Sanka Rasnayaka

, Guanlin Wang
, Ridwan Shariffdeen
, Ganesh Neelakanta Iyer
:
An Empirical Study on Usage and Perceptions of LLMs in a Software Engineering Project. 111-118 - Zhiming Li

, Yushi Cao
, Xiufeng Xu
, Junzhe Jiang
, Xu Liu
, Yon Shin Teo
, Shang-Wei Lin
, Yang Liu
:
LLMs for Relational Reasoning: How Far are We? 119-126 - Ananya Singha

, Bhavya Chopra
, Anirudh Khatry
, Sumit Gulwani
, Austin Z. Henley
, Vu Le
, Chris Parnin
, Mukul Singh
, Gust Verbruggen
:
Semantically Aligned Question and Code Generation for Automated Insight Generation. 127-134

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














